0

0
1

文字

分享

0
0
1

當寒暑成災(五): 臨極端靠調適?

李柏昱
・2014/06/19 ・3483字 ・閱讀時間約 7 分鐘 ・SR值 583 ・九年級

-----廣告,請繼續往下閱讀-----

在最單純的情況下,全球暖化造成平均氣溫升高,發生高溫或熱浪等極端天氣的機率因此增加。(圖片來源:作者,改繪自 Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation)
在最單純的情況下,全球暖化造成平均氣溫升高,發生高溫或熱浪等極端天氣的機率因此增加。(圖片來源:作者,改繪自 Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation)

季節帶來的氣候變化是眾所皆知的自然現象,冬冷夏熱也被視為理所當然,然而炎夏的熱浪和颱風,嚴冬的寒潮,有時卻讓數以萬計的性命就此消逝。為了更加了解寒暑災,我們邀請了天氣風險管理開發公司的總監賈新興,帶領我們一同面對台灣夏季以及冬季面臨的災害。

世界天氣極端事件越演越烈

世界氣象組織(World Meteorological Organization,簡稱WMO)2013 年 7 月發布了 2001 年〜 2010 年十年的全球極端氣候報告,指出這十年是從 1850 年代開始有氣象觀測以來最熱的十年。許多國家跟地區的平均溫度也在這十年中紛紛超過 1961〜1990 年的長期平均,部分地區甚至超過達攝氏 1 度。

氣溫平均上升對我們有甚麼影響?如果我們以氣溫為橫軸、不同溫度的發生頻率為縱軸,基本上氣溫的曲線會類似常態分布,越熱或越冷的氣溫事件相對較少。但是當平均溫度上升時,在最簡單的情形下,整個氣溫的分布曲線就會整體往高溫方向偏移,如此一來極端高溫的出現頻率將增加。WMO 的報告就指出,有將近一半的國家史上最高溫出現在 2001〜2010 這十年間,台北也在 2013 年 8 月初打破氣象觀測以來的最熱紀錄,來到攝氏 39.3 度。

即使如此,但也不表示低溫的情形就不會發生。例如中國南部 2008 年的雪災,以及北半球在 2009 年底至 2010 年初廣泛的極端寒冷天氣,持續寒冷與降雪在歐洲造成至少 450 人死亡。

-----廣告,請繼續往下閱讀-----

WMO 報告也明確指出過去十年中,因為異常高溫與寒冷天氣的死亡人數皆顯著上升。因熱浪喪命的人數總計將近 15 萬人,與 1991〜2000 年相比暴增 23 倍;而寒冷天氣死亡人數也成長將近兩倍。熱浪殺傷力之驚人,光 2003 年歐洲熱浪就奪走 6 萬 6 千多人性命;2010 年俄羅斯熱浪又造成 5 萬 5 千多人死亡。締造上述悲慘「紀錄」後,熱浪被美國疾病控制和預防中心(Centers for Disease Control and Prevention)宣布是「最致命的極端天氣型態」,其他天氣災害都只能拱手讓位。

台灣暑災三兄弟:高溫、颱風、午後強降雨

而我們生活的台灣,暑假期間又有哪些潛在的威脅蠢蠢欲動呢?賈新興指出,台灣最常見的暑期天氣災害便是高溫、颱風以及午後強降雨三者。隨著氣候變暖,這三者的出現頻率是否發生改變?

午後強降雨,就是大家熟知的西北雨,由於夏季豔陽與高溫引發地表強烈的上升氣流,發展出巨大的積雨雲,午後在短時間內局部地區降雨可達數十毫米,強度足以癱瘓都市的防洪系統。例如今年8月23日,新北市中永和地區便在一小時內降下 91 毫米雨量,造成市區多處淹水。不過隨著防洪工程的普及與進步,午後強降雨的威脅已減少許多。而其他兩兄弟:高溫與颱風,將是台灣未來主要面臨的極端天氣災害。

640px-Heavy_Rain
圖/By Pridatko Oleksandr – Ukraine, Public Domain, wikimedia commons.

高溫與熱浪

目前世界各國對熱浪並沒有一致的定義,而根據 WMO 對熱浪的定義,是指連續 5 天的氣溫高於該地區該月份長期平均溫度 5 度,才會被定義為熱浪。台灣官方目前尚未有熱浪的定義,不過超過 35 度即可稱為高溫天氣。

-----廣告,請繼續往下閱讀-----

在台灣,夏季高溫的主要原因是太平洋高壓長期籠罩,帶來穩定、下沉的空氣,導致地表悶熱且不下雨。另外隨著全球氣候變暖,也讓極端高溫發生的機率增加。以台北市每年的高溫日數來說,20 年前台北夏季(6 月〜8 月)超過攝氏 35 度的日數不到 30 天,然而 2001 年之後的每年都將近 40 天。

3852437054_6d7ebf9c39_z
圖/Sean McGrath@flickr

此外,地形與都市的發展也會影響一地的氣溫。例如台北的盆地地形,西南方的丘陵與台地阻擋了夏季西南季風,讓盆地裡的熱不易散去,再加上都市地區高度密集的建築物、水泥柏油鋪面、汽機車廢氣、冷氣廢熱等等,形成所謂的「都市熱島」,讓都市變成聚熱點,也讓台北成為夏季台灣最熱的地方。

颱風變多還是變少了?

氣溫上升,連帶使海洋變的更溫暖,有利於強烈風暴的形成,而台灣位於西北太平洋這個因盛產颱風而惡名昭彰的地區,颱風的光顧似乎也是家常便飯。然而 2009 年莫拉克釀成的重大災情殷鑑不遠,2013 年海燕就把菲律賓吹得東倒西歪,下一個超級颱風會不會就盯上台灣?很遺憾,答案是台灣遲早都要面對,只是時間早晚問題。

從統計數據觀之,西北太平洋颱風平均每年生成個數 25.7 個,過去幾十年來沒有明顯的上升趨勢,不過卻有明顯以十年左右呈現周期性的年代際變化(decadal variability),1998 年之後至今屬於颱風生成數量較少的時期。

-----廣告,請繼續往下閱讀-----

但是颱風形成後不一定都會光顧台灣,台灣每年平均有 3.6 個颱風侵襲。雖然前述 1998 年之後颱風生成數量較少,但侵襲台灣的颱風反而有變多的趨勢,2001 年達到最多的 7 個。雖然我們還不清楚颱風侵台的數量變化是否有規律,但我們可以確知的是,颱風對台灣的威脅大小主要與兩個因素有關:一是影響時間長度,比如說 2001 年的納莉和 2009 年的莫拉克都是在台灣悠哉漫步的颱風,影響時間長累積的降水便相對較多,更容易造成嚴重災情。第二個因素是與其他大規模天氣系統產生交互作用,例如引進西南氣流或是與東北季風產生共伴效應,當這些作用出現時往往也是台灣大禍臨頭之時。

南下遠征的冬將軍:西伯利亞冷氣團

雖然全球暖化讓平均氣溫上升,寒冷事件發生頻率變得較少,但我們仍然不可掉以輕心,低估寒冬的威力。各國冬季最擔心的是寒潮(cold surge)爆發,常造成嚴重的農漁業損失,驟降的氣溫也對老人與遊民等缺乏保暖準備的族群構成生命威脅。

影響台灣冬季的寒潮主要來自西伯利亞高壓,從過去的氣象觀測紀錄來看,台灣寒潮亦具有明顯的年代際變化,1970 年之前偏多,之後至今偏少。就氣候統計來看,平均而言台北冬季(每年 12 月〜隔年 2 月)出現 14 度以下氣溫的日數有 38 天,而近年來最冷的 2010 年年底至 2011 年年初,則出現了 55 天的低溫日數。

科學家利用電腦模式的研究發現,全球暖化造成北極夏季海冰面積減少,會導致高空噴射氣流(jet stream)南北擺動幅度更大、更持續,帶來更極端的天氣型態,並且也會增強冬季的西伯利亞高壓,為中緯度地區帶來嚴寒。不過對位處副熱帶的台灣而言,因為西伯利亞高壓形成後主要有兩條移動路徑,一是往東影響韓國與日本,二是往南影響台灣。所以即便西伯利亞高壓增強,並不代表當年台灣冬季就會很冷,還必須考慮它的移動方向。

-----廣告,請繼續往下閱讀-----

隨著觀測技術演進,氣象局在氣溫預測方面已經能在寒潮來臨前5〜7天預測將會有低溫侵襲,同時在夏季雖然大氣環境較為複雜,亦能在3〜5天前預測高溫事件。不過極端高溫與低溫究竟會熱到多熱、冷到多冷,仍要等到前3天左右才能大致掌握確切的影響時間以及影響的強度。

極端事件充斥的未來世界,調適成為生存之道

WMO 的報告傳達一個明確的訊息,未來我們將面對一個極端天氣事件頻仍的世界。從全球尺度來說,極端高溫已成為最具殺傷力的自然災害事件,而低溫亦不惶多讓,嚴寒暴雪仍持續摧殘中高緯度的國家。

而在台灣,氣候變遷帶來的影響層面更廣,2012 年行政院經濟建設委員會公布的《國家氣候變遷調適政策綱領》中,指出未來台灣總體而言將面臨三大衝擊:第一是氣溫上升降雨型態改變,與 20 世紀末相比台灣氣溫將上升攝氏 2 度至 3 度,降雨型態則朝向強度越強、集中於雨季等模式變化。第二是極端天氣事件發生的強度與頻率將會升高,如寒暑災加劇,使災後復原的困難度提升,生命財產的損害程度也隨之增加。第三則是海平面上升,對沿海地區構成威脅。

面對這個不斷劇烈變化的世界,從你我開始,直至整個社會與政府,都需要一套更具彈性的調適方法,在極端天氣事件與暖化的威脅下,減緩氣候變遷的程度,適應氣候變遷所造成的影響,以謀求持續生存、生活與發展。

-----廣告,請繼續往下閱讀-----

(本文由科技部補助「新媒體科普傳播實作計畫─重大天然災害之防救災科普知識教育推廣」執行團隊撰稿/2013年/12月)

本文原發表於行政院科技部-科技大觀園「科技新知」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!

責任編輯:鄭國威│元智大學資訊社會研究所

延伸閱讀:

-----廣告,請繼續往下閱讀-----

《2013年 世界氣象組織 2001-2010年 氣候極端事件十年 決策者摘要》

《2012年 行政院經濟建設委員會 國家氣候變遷調適政策綱領》

文章難易度
李柏昱
81 篇文章 ・ 2 位粉絲
成大都市計劃所研究生,現為防災科普小組編輯。喜歡的領域為地球科學、交通運輸與都市規劃,對於都市面臨的災害以及如何進行防災十分感興趣。

0

3
1

文字

分享

0
3
1
溫室效應有救了?把二氧化碳埋進地底吧!  
鳥苷三磷酸 (PanSci Promo)_96
・2024/03/25 ・1389字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

本文由 台灣中油股份有限公司 委託,泛科學企劃執行。 

近年全球對於氣候變遷的關注日益增加,各國紛紛宣布淨零排放(Net Zero Emissions)的目標,聯手應對氣候變遷所帶來的挑戰。淨零排放是指將全球人為排放的溫室氣體量和人為移除的量相抵銷後為零。而「碳捕存再利用技術(Carbon Capture Utilization and Storage,簡稱 CCUS)」技術被視為達成淨零重要的措施之一。 

CCUS 示意圖。圖/INPEX CCS and CCUS Business Introduction Video 2022 

「碳捕存再利用技術 CCUS」是什麼? 

CCUS 技術可以有效地將二氧化碳從大氣中捕捉並封存,進而減少溫室氣體的排放。CCUS 包含捕捉、運輸、封存或再利用三個階段,也就是將二氧化碳抓下來,並且存起來或是轉換成其他有價值的化學原料。關於如何捕捉二氧化碳,可以參考我們先前拍的影片《減碳速度太慢?現在已經能主動把二氧化碳抓下來!?抓下來的二氧化碳又去了哪裡?》。 

至於捉下二氧化碳之後,該存放在哪裡呢?科學家們看上一個經過數千萬年驗證、最適合儲存的地方——地底。沒錯,地底可不只有石頭跟蜥蜴人,只要這些石頭中存在孔隙,就可以儲存氣體或液體。最常見的就是天然氣與石油。現在,我們只要將二氧化碳儲存到這些孔隙就好。 

-----廣告,請繼續往下閱讀-----

封存的地質條件也很簡單,第一,要有一層擁有良好空隙率及滲透性的「儲集層」,通常是砂岩。第二,有一層緻密、不透水且幾乎無孔隙的岩石,用來阻擋儲集層的氣體向上逸散的「蓋層」,常見的是頁岩。只要儲集層在下,蓋層在上,就是一個理想的儲存環境。 

臺灣哪裡適合地質封存? 

臺灣由東往西,從西部麓山帶、西部平原、濱海到臺灣海峽,都有深度達 10 公里的廣大沉積層,並且砂岩與頁岩交替出現,可說是良好的儲氣構造。 

至於臺灣適合封存二氧化碳的地點,有個很直接的作法,就是參考石油、天然氣的儲存場域就好,也就是所謂的「枯竭油氣層」。將開採過的天然氣或石油的空間,重新拿來儲存二氧化碳。而臺灣的油氣田,主要集中在西部的苗栗與臺南一帶,在 1959~2016 年,累計產了 500 億立方公尺的天然氣,和超過 500 萬公秉的凝結油。 

臺灣油氣田位置圖。圖/《科學發展》2017 年 6 月第 534 期
鐵砧山每年封存 10 萬噸二氧化碳(相當於通霄鎮 1/3 人口一年的二氧化碳排放量)。圖/台灣中油

而至今這些枯竭油氣田,適合來做二氧化碳的封存。例如苗栗縣通霄鎮的鐵砧山是臺灣目前陸上發現最大的油氣田,不只是封閉型背斜構造,更擁有厚實緻密的緻密蓋岩層。在原有油氣田枯竭後,從民國 77 年開始轉為天然氣儲氣窖利用原始天然氣儲層調節北部用氣的方式,已持續超過 35 年。因此中油也正規劃在鐵砧山氣田選擇合適的蓋層和鹽水層,進行小規模的二氧化碳注入,作為全國首座碳封存的示範場址。並同時進行多面向的長期監測,驗證二氧化碳封存的可行性與安全性。 

-----廣告,請繼續往下閱讀-----

更多詳細內容及國際 CCUS 案例,歡迎觀看影片解惑! 

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 302 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
1

文字

分享

0
2
1
氣候變遷讓缺水、淹水更嚴重,臺灣做好準備了嗎?——專訪水利署賴建信署長
鳥苷三磷酸 (PanSci Promo)_96
・2023/10/31 ・3262字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文由 經濟部水利署 委託,泛科學企劃執行。

「30年後,我們將面對更嚴峻的缺水考驗。」水利署署長賴建信接受我們採訪時坦承地說。

水利署署長賴建信

近年,全臺西部地區都曾遇過「供五停二」的停水措施,,缺水問題更早已是全球問題。根據 2021 年發表在 Nature Communication 上的論文,2016 年全球有 9.33 億的城市人口面臨缺水問題,約為總人口的 12 %;依據過往趨勢推測,至 2050 年,全球將有 16.93-23.73 億的城市人口面臨缺水問題,相當於 2050 年總人口的 17%-24%。

為什麼全球缺水問題會如此嚴重呢?賴建信署長認為首要是「氣候變遷」改變了降雨強度與頻率,並舉生活中的經驗來說明氣候變遷:

「生活在臺灣地區的我們,會感覺到最近好像很久都不會下雨,然後不下雨的時候很熱,但一下雨,雨滴大到打在身上都會痛。」而近期紐約暴雨造成地鐵淹水癱瘓,也是氣候變遷造成的。

-----廣告,請繼續往下閱讀-----

氣候變遷讓降雨更加極端

賴署長說:「可以說以後的降雨會非常集中在特定某幾天。就像剛剛講的,就是突然暴雨,然後接下來一個大乾旱。 」

無論是缺水還是淹水,氣候變遷造成的影響都不容忽視,賴署長表示,不只是降雨頻率會更低,降雨地區也會更加不平均,降雨的強度也會有所提升。

依照聯合國政府間氣候變化專門委員會最糟糕的預測(SSP5-8.5),到了這個世紀中,臺灣暴雨強度會比世紀初提升 20%,世紀末會提升 40%,即便是最優預測(SSP1-2.6),也會在世紀中提升 15.7%。

據上所述,氣候變遷讓全人類無法迴避「降雨不均造成的地區性缺水」,以及「降雨強度提升造成的地區性水災」這兩個問題。雖然個人、企業與政府都為了減緩氣候變遷有所作為,但賴署長也表示,我們該「從科學擁抱殘酷現實,對未來做最壞打算」。

簡單來說,若所有締約國都遵守聯合國氣候變遷大會(COP)的決議完成減碳工作,那氣候變遷也只是不再加劇,並不會立刻恢復到過去的型態,而只要有其中幾項沒有達成,那全世界就得面對更嚴峻的情況。

-----廣告,請繼續往下閱讀-----

回到開頭賴署長所說的 30 年,我們還有時間做好基礎建設,降低氣候變遷對人民造成的影響。「從2016年開始,我們就思考這些問題,思考說臺灣未來面對的自然環境,我們應該如何因應、構築一個怎麼樣的未來。所以當時我們就開始思考包括區域調度、多元水源等相關計畫。」

賴署長提到的「區域調度」相關計畫,即是目前正在進行的「珍珠串計畫」。

地區性缺水解決方案—「珍珠串計畫」

「珍珠串計畫」預計把台灣西部像珍珠一樣珍貴的水源,用聯通管線串聯起來,讓珍貴的水資源可以妥為應用。

臺灣降雨時間和空間差異極大,桃園至屏東等西部地區,在 5 月至 10 月是豐水期,11 月到隔年 4 月是枯水期,然而北北基與宜蘭等東北地區,卻是完全相反,10 月至隔年 4 月有東北季風帶來的豐沛雨量,此時若能將東北地區的水調度至西部地區,將能緩解西部地區缺水。而未來面對更加極端的降雨情況,也能提供一定的支援。

珍珠串計畫的聯通管線預計將在 2028 年全數完成,而在 2021 年旱災中搶先開通的「桃園—新竹備援管線」,從桃園每日調度 20 萬噸的水給新竹,在旱災期間總計調度 2300 萬噸,約是 0.6 座寶山第二水庫的蓄水量,不僅讓新竹地區免於限水所苦,也讓新竹科學園區的科技業能維持生產。

-----廣告,請繼續往下閱讀-----
寶山第二水庫。圖/Wikipedia

不僅管線串聯,更要開創「多元水源」

有了聯通管串聯,就能解決缺水問題嗎?賴署長給出否定答案:「如果只有一種供水方式,突然有意外就完了。當然要有多股水源,多條管線。」

過往開發新水源,直覺想到的是蓋水庫,不過蓋水庫不僅要謹慎評估該地是否有充足水源,考慮安全性及經濟性是否合理,更要謹慎評估對環境生態的影響,通常一座水庫從規劃到興建完成,需耗時數十年的時間。

為了因應氣候變遷與逐步增加的用水量,水利署目前已朝「多元水源」的方式來尋找新水源,像是南化與寶山第二水庫藉由「溢流堰加高」擴增蓄水量,臺中水楠經貿園區淨化污水再利用的「再生水」,以及以及高屏溪的「伏流水」與新竹的「海淡水」,這些多元水源將與水庫水、川流水及地下水等傳統水源共同支撐起全臺用水。

此外,水利署也正想辦法讓洪水資源化,臺灣山高水急,大雨過後的洪水大部分都流向大海,只有少部分可被水庫收集,像是「河槽人工湖」就能增加收集水量,來供應日常使用,或補注超抽的地下水。

地區性強降雨解決方案—從「不淹水」轉變為「耐災韌性」

受氣候變遷影響,近年臺灣短延時強降雨頻率提高,低窪地區或排水系統也時常發生淹水,顯現目前臺灣防洪工程的不足。

-----廣告,請繼續往下閱讀-----

過去臺灣由於預算有限,治水策略多以建護岸、堤防或下水道為主,然而這種作法有其極限,即便已完成防洪工程的區域,也未必能面對未來極端降雨的情況,為此,水利署改變過往治水策略,從「不淹水」轉變為「耐災韌性、與水共生」,而在多年來中央與地方政府的聯合推動下,各地開始邁向「逕流分攤」的方式來治理水患。

「逕流」是指下雨時地表土壤無法吸收的水份,在地表形成的水流。「逕流分攤」是在淹水較為嚴重的河段,於新建(或改建)公共設施時,以不妨礙設施功能,建設洪水期間可收集逕流的滯洪池。此外,為提升土地耐淹能力,「出流管制」政策也要求開發單位,必須提升建築物的透水、保水與滯洪能力。

以日本東京鶴見川為例,由於東京市的發展,導致土地保水、滲透能力降低,洪水尖峰流量增加,更容易發生淹水。為此日本將橫濱日產體育館建置成兼具滯洪功能的公共設施,來應對鶴見川的洪峰流量,館場下方的滯洪池高度高達五公尺,平日則作為停車場使用。

橫濱日產體育館。圖/Wikipedia

「我們希望所有的土地都能更有效地利用,例如我們學校的操場,如果下面是一個蓄水池,那大雨下來是不是就不容易淹水了?」賴署長表示,近期開工的鹿港洛津國小的地下停車場兼滯洪池工程,正是「逕流分攤」的案例。

風暴將至,我們能做好準備嗎?

賴署長略為嚴肅地說:「我不期待氣候型態會回到 30 年前。」並重提了在 IPCC 的最優預測(SSP1-2.6)下,臺灣仍必須在 2050 年面對暴雨強度提高 15.7% 的情況。

-----廣告,請繼續往下閱讀-----

無論我們怎麼做,風暴已確定到來,那麼我們能事先做好準備嗎?賴署長說:「我認為我們能做到的,是使用適當的方法趨吉避凶。」隨著科學進步,模擬變得越來越精準,但終究還是預測,存在不確定性,雖然 2050 年最優預測是暴雨強度提高 15.7%,但上限呢?真的就只有前面提到的 20% 嗎?賴署長提醒我們要面對氣候變遷的現實,並在面臨風暴來臨之前做好準備,這個準備不只要能面對預估強度,更要有足夠的韌性,來面對超越預期的情況。

最後,賴署長說:「每個巨大的改變,一定是從一個微小的生活習慣,比如說開始固定運動,或是固定減少能源浪費。」也許現在看來微不足道的小動作,都將是未來的「重要一步」,就像蝴蝶效應一樣。

相信科學數據,擁抱不確定性,積極做出因應,這不僅是賴署長個人的想法,也是水利署全體的信念,唯有如此,才能在超乎預期的「風暴」來臨之前,做出最好的選擇。

參考文獻

0

8
0

文字

分享

0
8
0
氣候變遷會讓世界變得又熱又病嗎?暖化之下的寄生關係可不簡單
阿咏_96
・2023/05/15 ・3188字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

近年來,氣候變遷已經變成一個眾所皆知的熱門話題,不僅影響著我們身處的自然環境,以及人類生活,也對生物的繁殖、生長、分布等造成衝擊。不過,今天我們沒有要討論海平面上升、極端天氣等這些巨觀環境的改變,而是要來談談或許你我體內都有的——寄生蟲。

提到寄生蟲,大家比較熟悉的或許是蟯蟲、蛔蟲等,有機會寄生於人類體內的寄生蟲,而自然中許多物種之間也有寄生關係,但這與氣候變遷有什麼關係呢?

有許多研究顯示,氣溫升高會導致寄生蟲爆發事件增加,也有些研究說寄生蟲在高溫下的表現比宿主好,因此暖化可能會造成相關疾病越來越嚴峻,後來也衍生出「地球越溫暖,流行病越多」的假說。

地球越溫暖,流行病越多」的假說近來相當盛行。圖/envatoelements

寄生不是哩想ㄟ那麼簡單

俗話說:魔鬼藏在細節裡。腹肌藏在脂肪裡。

如同在生物課本裡學過的,寄生關係是生物間的交互作用,一種生物寄居在另一種生物的體表或體內,獲取營養得以生存、繁殖,所以也並非只有寄生蟲的事,和宿主的生理也有很大關係。找到溫度升高會影響寄生過程的哪些步驟,以及背後的機制怎麼運作,是了解氣候變遷對寄生關係影響的關鍵。

-----廣告,請繼續往下閱讀-----

近期發表在英國皇家學會《自然科學會報》(Philosophical Transactions of the Royal Society B)的一項新研究就發現,溫度能夠調節寄生真菌在宿主水蚤體內的感染機制。

這個研究由臺灣大學氣候變遷與永續發展學程助理教授孫烜駿與美國密西根大學研究團隊合作,利用暖化實驗觀察水蚤和真菌之間的寄生關係。

他們將一種水蚤 Daphnia dentifera 作為實驗物種,水蚤平常吃藻類等浮游植物,然後也會被更大的捕食者吃掉,因此水蚤在淡水食物網中扮演著重要角色。而今天的另一個主角 —— 寄生真菌 Metschnikowia bicuspidata ,則是一種會感染多種水蚤的酵母菌。

那水蚤是怎麼被感染的呢?

-----廣告,請繼續往下閱讀-----

宿主與寄生真菌之間的攻防戰

水蚤在濾食水中浮游植物時,寄生真菌的孢子可能會一起被牠吃進去,這時感染過程就開始了(水蚤表示:窩⋯⋯窩不知道QQ)首先,寄生真菌的針狀孢子需要先刺穿水蚤的腸道上皮細胞,才能進到體腔內開始發育、繁殖,感染初期有些水蚤還可能痊癒,否則就會進到最終感染階段,一旦水蚤體腔內充滿寄生真菌的孢子或孢子囊,便不可能康復,最終走向死亡,之後下一代孢子釋放回環境中,再被新宿主吃掉,完成感染週期。

寄生真菌在水蚤中的感染過程。生真菌的針狀孢子會先刺穿水蚤的腸道上皮細胞。圖/英國皇家學會《自然科學會報》

也不是所有被吃進去的孢子都能夠成功感染宿主,必須要經過重重關卡,畢竟水蚤也不是吃素的(好啦水蚤真的吃素沒錯 XD)

而兩道最重要的關卡就是「物理屏障」與「細胞免疫」。

物理屏障是一種常見的防禦形式,例如我們的皮膚和植物的角質層,在水蚤與寄生真菌的感染過程裡,腸道上皮細胞就是抵抗孢子進入體腔的物理屏障,像是一道能夠抵抗外來敵人的城牆。

-----廣告,請繼續往下閱讀-----

但如果孢子還是順利進到水蚤的體腔內,細胞免疫就像一支軍隊,免疫細胞士兵們會聚集到被感染的部位,開啟防禦模式,共同抵禦外敵,也就是前面提到的,有些剛被感染的水蚤有機會康復的原因。

健康的 Daphnia dentifera 水蚤(左圖)與被寄生真菌 Metschnikowia bicuspidata 感染的水蚤(右圖)。圖/國立台灣大學

暖化之下,寄生關係會怎麼樣

研究團隊想知道:溫度對物裡屏障和細胞免疫的影響,以及會不會影響最終感染的機率。

因此他們把水蚤放到 20°C 和 24°C 下的環境飼養,為甚麼是這兩個溫度呢?

根據先前研究,20°C 是適合水蚤生長繁殖的溫度,而 24°C 則是來自 2100 年氣候變遷預測下的平均溫度變化,自西元 1985 年起,夏季的湖面溫度以每十年 0.34°C 攀升,到本世紀末預計上升 4°C。

並將不同溫度下飼養的水蚤,分別放入有寄生真菌和沒有寄生真菌的環境,總共四種環境條件的組別。

-----廣告,請繼續往下閱讀-----
  1. 實驗組:24°C,沒有寄生真菌
  2. 實驗組:24°C,有寄生真菌
  3. 控制組:20°C,沒有寄生真菌
  4. 控制組:20°C,有寄生真菌

接著,為了知道感染初期的情形,針對有寄生真菌的組別,研究團隊在放入真菌 24 小時後,用複式顯微鏡觀察,檢查水蚤腸道和體腔內是否有孢子,以及孢子的數量。

那要怎麼知道物理屏障和細胞免疫的防禦效果呢?

如同前段提過的,我們將作為物理屏障的腸道上皮細胞想像成城牆,免疫細胞想像成軍隊,而寄生真菌的孢子是試圖入侵的外敵

腸道的防禦力便是用「後來在體腔內的孢子數」與「所有試圖刺穿腸道上皮的孢子數」相除;也就是「進到城牆內的敵人數」除以「所有一開始來城牆外攻擊的敵人數量」。(編按:每一百個攻擊城牆的敵人,會有多少人突破城牆的防禦進到牆內)

-----廣告,請繼續往下閱讀-----

除此之外,團隊也觀察在不同溫度下水蚤腸壁上皮的厚度,畢竟城牆的厚度可能是防禦的關鍵。

而細胞免疫則是以「前來支援的免疫細胞數」除以「體腔內的孢子數」計算,可以想像成一個敵人需要幾個士兵一起抵抗

除了兩道關卡的抵禦能力外,為了解水蚤的健康狀態,研究團隊紀錄牠們在感染後的死亡率和繁殖力。

溫度影響的不只是寄生關係

實驗結果發現,較溫暖環境下的水蚤腸壁上皮細胞比控制組厚,但腸壁是越厚越好嗎?

-----廣告,請繼續往下閱讀-----

另一個結果顯示,其實較厚和較薄的腸壁上皮細胞,比較能抵抗寄生孢子的攻擊,反而是有中等腸道厚度的水蚤防禦孢子進入體腔的能力較弱。

而關於細胞免疫,則發現隨著成功進入體腔的孢子數量增加,附著在孢子上的免疫細胞總數也跟著增加,但在較溫暖環境下飼養的水蚤召集來的免疫細胞,比控制環境下來得少。也就是說,越多敵人入侵,軍隊會募集越多士兵來共同對抗,但在溫暖環境下召來的士兵較少

那物理屏障和細胞免疫之間有什麼關係呢?

在 20°C 下,腸道上皮細胞越厚,每個寄生孢子所需要的免疫細胞數就越少,這似乎蠻容易理解的,若城牆越厚,軍隊火力就不需要太強,反之亦然。

-----廣告,請繼續往下閱讀-----

但在 24°C 卻看不到同樣的趨勢,我們知道的只有在溫暖環境下,同樣腸道厚度免疫細胞仍比控制組少。

最後,不論是繁殖力還是存活率,都是在溫暖環境下被感染的水蚤敬陪末座。

從這個研究,我們可以得知,溫度上升不僅會改變宿主的物理屏障,也會影響細胞免疫,進而改變寄生真菌對水蚤的感染結果。在更了解溫度影響寄生關係中的哪些關鍵特徵和結果後,便能預測在暖化環境中,宿主與寄生蟲之間的交互作用,以及所導致的後果。

參考文獻

  1. Sun, S. J., Dziuba, M. K., Jaye, R. N., & Duffy, M. A. (2023). Temperature modifies trait-mediated infection outcomes in a Daphnia–fungal parasite system. Philosophical Transactions of the Royal Society B, 378(1873), 20220009.
  2. Rohr, J. R., & Cohen, J. M. (2020). Understanding how temperature shifts could impact infectious disease. PLoS biology, 18(11), e3000938.
  3. Harvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S., & Samuel, M. D. (2002). Climate warming and disease risks for terrestrial and marine biota. Science, 296(5576), 2158-2162.
  4. Miner, B. E., De Meester, L., Pfrender, M. E., Lampert, W., & Hairston Jr, N. G. (2012). Linking genes to communities and ecosystems: Daphnia as an ecogenomic model. Proceedings of the Royal Society B: Biological Sciences, 279(1735), 1873-1882.
  5. Ozersky, T., Nakov, T., Hampton, S. E., Rodenhouse, N. L., Woo, K. H., Shchapov, K., … & Moore, M. V. (2020). Hot and sick? Impacts of warming and a parasite on the dominant zooplankter of Lake Baikal. Limnology and Oceanography, 65(11), 2772-2786.