0

0
0

文字

分享

0
0
0

邁向科學研究的前線: 手機變身螢光顯微鏡!

Scimage
・2014/07/16 ・2179字 ・閱讀時間約 4 分鐘 ・SR值 523 ・七年級

-----廣告,請繼續往下閱讀-----

顯微鏡可以讓人看清楚小世界裡發生的事情,但是進入研究分子的時代,因為光的波長只有到數百個奈米(nm),所以以光學顯微鏡無法直接觀察分子的種類與型態,雖然可以利用電子顯微鏡,不過操作使用上難度高,研究人員也難輕易使用,偏光顯微鏡能提供分子排列的訊息,但是如果能用光學的方式直接看到分子或確定不同種類的分子存在與否,就能讓很多重要的物理或生物資訊被研究發現。而螢光顯微鏡就是目前在研究上用的最多與最重要的技巧之一。

一般顯微鏡利用光的吸收跟反射測來觀測物體,偏光顯微鏡利用光波的偏振特性,而螢光顯微鏡就是利用光在波長方面的特性的來觀測分子。原理是特定種類的分子(稱為螢光源,fluorophore)在吸收短波長的光之後可以放出長波長的光,觀測時如果能把原本的波長的光濾掉,只剩下激發後較長波長的的光被看到, 這樣一來就可以斷定特定的螢光分子是否存在。這樣的概念看似簡單,卻能帶來分子種類的解析性,舉例而言,像是把抗體加上螢光基團,就可以利用螢光辨識特定分子是否在樣品上,利用螢光蛋白序列加上改造的基因,就可以知道基因轉殖有沒有成功,把特定蛋白加上螢光蛋白,就可以在空間中甚至在細胞內追蹤分子或觀測神經纖維網路。在研究前沿上有數不完的研究,從生化檢測、基因定序、神經細胞結構等等,都是靠著螢光顯微鏡才能實現。

在技術上因為螢光訊號很弱,螢光顯微鏡通常用水銀燈或其他氣體放電燈作為光源,確保很強的光照,為了要濾除非螢光的訊號,需要很好的光學濾片組,這也讓螢光顯微鏡一直都只能在研究中或是在很貴的儀器內才能進行螢光偵測。

手機是現在人人都有的智慧裝置,結合了照像與傳輸分享的強大功能,如果在手機上如果能夠實現螢光的顯微觀測,將對科學發展有很大的幫助,有研究能力的手機顯微鏡與手機偏光顯微鏡之前已經由科學影像實現了,那手機有可能完成螢光觀測這項任務嗎?

-----廣告,請繼續往下閱讀-----

讓手機顯微鏡變成有螢光的能力設計是這樣,首先在光源方面,因為半導體技術的發展,很多窄波段的固態光源變成可能,不再需要從全光譜中濾出特定的光出來, 而是可以直接有效率的使用半導體光源,所已選用合適的短波段高亮度的LED就能大部分解決激發光源的問題,且同時能降低對激發濾片(Excitation filter)的要求,可以以吸收式的濾片達成。

在光路上,目前一般的螢光設計是epifluorescence,由同個物鏡照出激發光,偵測背反射的螢光訊號,可以減少對發射濾片 emission filter的要求,但是同軸照明需要較複雜的設計與雙色濾片dichroic filter,基於同樣的考量,可以改用暗視野照明來達成,加上發射濾片emission filter,始發射光與螢光的光譜沒有交錯, 就可以觀測螢光了!

以深藍紫色激發為例,目前可取得最好的固體光源的光譜如下,波長到450nm即全部消失。

p1

在選用的emission filter上,濾除連續光譜的日光後的光譜圖觀測如下,可以看到470nm以下的光全部被濾掉。

-----廣告,請繼續往下閱讀-----

p2

所以選用這組光源與發射濾片,即可以以藍紫光觀察從綠光到紅光的螢光。設計相關的激切結構跟濾片在手機顯微鏡上,實際完成的手機螢光顯微鏡成品如下:

p3

整體發出的紫藍紫光是由載物台下方進行暗室野照明所發的,就可以有效的激發出螢光訊號,注意在播片的邊緣有不同顏色的色光,那就是塗在坡片上的螢光物質所發出的螢光經由全反射而照出。

以下以兩個例子來說明這螢光模組的能力,首先可以同時關測到不同顏色的螢光(螢光染料壓的指紋),紅色與綠色各試不同的染料,黃色是混合之後的顏色。

p5

在生物的觀察上,也可以觀察到斑馬魚身上卵黃的自體螢光訊號。

-----廣告,請繼續往下閱讀-----

p6

除了深藍紫光之外,為了讓離激發光源比較遠的紅色螢光能更被有效率的激發,在實現手機螢光顯微鏡上,也設計了另一組以470 nm為中心的光源,目前兩組的光源與長通螢光濾光片的光譜如下,這樣一來所有常用的綠色到紅色螢光都可以被激發觀測。

p7

(其中下方淺藍色跟激發光跟長通濾波有交錯,需額外使用一片 excitation filter 來濾除)

螢光模組是手機顯微鏡,除了實現手機偏光顯微鏡後 ,另一個把專業顯微技術在手機實現的計畫,希望將會讓很多原本屬於實驗室的觀測可以再被更簡單的觀察記錄,有讓更多人與實驗室有方便的工具作更方便的觀察與檢測!


首次製作將提供台灣的實驗室進行申請使用螢光模組,歡迎有想一起測試的研究朋友加入科學社群 科學maker 索取,期間為 7/10-7/20。

-----廣告,請繼續往下閱讀-----

科學影像的顯微鏡製作計畫目前專屬的科學社群 科學maker 已經有超過 4000 位朋友加入,分享觀測的顯微照片超過4000多幅,來協助製作科學儀器的朋友超過 百人,花整天的時間替更多人製作科學儀器,目前贈送超過 70所偏遠學校手機顯微鏡做為教育之用,除了個人使用外,也開始要協助如泛科學的科學活動或是台大的NTU博物館行動展示盒計畫等大眾的科學活動,也進入了國小,國中,高中,大學等校園數百所正式的學習環境,做為充實顯微設備與改善課程用,希望手機螢光顯微鏡的實現,能讓手機顯微鏡變的更有能力,走入實驗的現場,讓台灣有更好的科學實驗環境!

手機顯微鏡網站手機顯微鏡 & 科學maker,對手機顯微鏡有興趣的朋友,歡迎加入科學maker,一起使用與分享顯微鏡的觀測~

轉載自科學影像 Scimage

文章難易度
Scimage
113 篇文章 ・ 4 位粉絲
每日介紹科學新知, 科普知識與實際實驗影片-歡迎每一顆好奇的心 @_@!

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

10
3

文字

分享

0
10
3
什麼是「近場光學顯微術」?為何它是開啟奈米世界大門的關鍵?
科技大觀園_96
・2021/12/01 ・2708字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

近場光學顯微術可突破繞射極限,使我們看到奈米等級的光學影像。圖/孔瀞慧繪

傳統光學顯微技術發展幾個世紀之後,從 20 世紀後半⾄今,突破光學繞射極限成為顯微技術的重要課題。繞射極限是光波所能聚焦的最⼩尺寸(約為光波長的⼀半,以可⾒光來說約 200-350 nm),仍遠⼤於分⼦和奈米材料。顯微鏡的發明是進入微觀世界的⾥程碑,⽽突破光學繞射極限後就能開啟進入奈米世界的可能性。 

突破光學繞射極限的超⾼解析度顯微技術⼤致上可以分為遠場(far field)與近場(near field)兩⼤類,這兩者的差別在於是否利⽤探針在靠近樣品距離遠⼩於⼀個波長(約數⼗奈米)處進⾏量測,若有則為近場,其餘則屬於遠場。⽽遠場顯微技術若要達到奈米級別的超⾼解析度, 需要以特殊螢光標定加上大量電腦計算來輔助。 

中央研究院應⽤科學研究中⼼研究員陳祺,專攻近場光學顯微術,屬於探針掃描顯微術(Scanning probe microscopy, SPM)中與光學相結合的分⽀。 

探針掃描顯微術,家族成員眾多 

探針掃描顯微術泛指使⽤探針來掃描樣品的顯微技術,依照原理的差別再細分成多個類別。在整個探針掃描顯微術家族中,最早的成員為 1981 年問世的掃描穿隧顯微鏡(Scanning tunneling microscope, STM),其主要機制是偵測探針與待測物表⾯間的量⼦穿隧電流(註1),作為回饋訊號來控制針尖與待測物的距離,⽽得到待測物表⾯次原⼦級別的高低起伏。1986 年發明的原⼦⼒顯微鏡(Atomic force microscope, AFM)則是⽬前最廣為應⽤的探針顯微技術,其以針尖接觸(contact)或輕敲(tapping)物體,藉由偵測針尖和物體表⾯間之凡得瓦⼒,得知物體表⾯的高低起伏。 

-----廣告,請繼續往下閱讀-----
探針掃描顯微術(SPM)家族。僅示意,並未包含所有的成員。圖/劉馨香製圖,資料來源:陳祺

在探針掃描顯微術中,控制針尖與物體的相對距離是重要的課題,STM 可控制距離在一奈米以下,AFM 則可在一奈米到數十奈米間變化。此外,要在奈米世界「移動」並不是⼀件簡單的事。因為⼀般以機械⽅式的「移動」,其尺度都會在微米級別以上,這就像是我們沒有辦法要求⼤象邁出螞蟻的⼀⼩步⼀樣。所幸 1880 年居禮兄弟發現壓電材料會因為外加電場,⽽導致晶格長度的伸長或者收縮,即可造成奈米級別的「移動」。⽬前所有的探針顯微術都是以壓電效應達成對針尖或樣品「移動」的控制。 

近場光學顯微術,探針加上光 

依 STM/AFM 控制針尖的技術基礎,外加光源於針尖上,即為近場光學顯微術(Scanning near-field optical microscopy, SNOM),依照光源形式的不同可區分為兩⼤類: 

1. 微孔式近場光學顯微術(aperture SNOM,簡稱 a-SNOM) 
2. 散射式近場光學顯微術(scattering SNOM,簡稱 s-SNOM)

a-SNOM 是利用透明的 AFM 針尖,先鍍上⼀層⾦屬薄膜,並打上⼩洞,讓光從⼤約 50-100nm 左右的⼩洞穿出,得到⼩於光學繞射極限的光訊號。s-SNOM 則是外加雷射光源聚焦於針尖上,並量測散射後的光訊號。其中,針尖增強拉曼散射光譜顯微鏡(Tip-enhanced Raman spectroscopy, TERS)是屬於 s-SNOM 的⼀種特殊近場光學模式,主要為量測拉曼散射光譜,即可識別分⼦鍵結的種類。由於拉曼訊號相對微弱,透過探針鍍上⾦屬薄膜,即可利⽤針尖端局域電場的放⼤效果,來增強待測物的拉曼訊號,並利用針尖的移動來得到奈米級空間解析度的拉曼成像。 

(左)a-SNOM 所使用的探針,針尖上有微孔。(中)a-SNOM 原理:綠色箭頭表示光從上方經微孔射入樣品,紅色箭頭表示偵測器接收光訊號。(右)s-SNOM 原理:綠色箭頭表示光聚焦於針尖,紅色箭頭表示偵測器接收光訊號。光源與偵測器的位置可互換。圖/陳祺提供

陳祺的研究歷程與觀點

在陳祺就讀博士期間,其研究領域主要為結合低溫超高真空 STM 的單分子光學量測,需要極度精進探針掃描顯微鏡的穩定與解析度。畢業之後將⽬標轉向室溫室壓下的探針掃描顯微術與光學的結合,用以量測更多種類和不導電樣品。

-----廣告,請繼續往下閱讀-----

陳祺在博⼠後期間的⼯作以 TERS 為主,曾發表解析度⾼達 2 奈米以下的成果,維基百科的 TERS 條⽬,也引⽤了陳祺當時發表在《Nature Communication》的論⽂。回國進入中研院之後,陳祺也開始 a-SNOM 的研究。

無論 TERS 或 a-SNOM,兩者的實驗設計都是建構在 AFM 上,因此陳祺會⾃⾏架設更精準的 AFM,以達成近場光學顯微術更佳的穩定性。 

近場光學實驗操作上的困難除了針尖的製作之外,穩定的 AFM 掃描其實也相當不容易,是維持針尖品質的關鍵。傳統上 a-SNOM 都是以接觸式(contact mode)的 AFM 方式掃描,以防止輕敲式(tapping mode)起伏會干擾光訊號,代價就是 AFM 的解析度極差。陳祺將⾃架的近場光學實驗放進⼿套箱裡,能讓針尖在輕敲式時維持極⼩的振幅(在⼀個奈米以下),可以大幅提高 AFM 的形貌解析度,也幾乎不損傷針尖。由於陳祺有非常豐富⾃架儀器的經驗,才能很⼤程度突破⼀般商⽤儀器的限制。 

不同的顯微影像比較。樣品為一種二維材料異質結構,左為結構示意圖,中為 AFM 影像,右為 a-SNOM 影像。AFM 能精確解析樣品的高低起伏,然而 a-SNOM 可解析樣品的光學特性。圖/陳祺提供

⼀般認為 TERS 有較佳的解析度,但由於 TERS 在散射訊號影像上有很大程度的不確定性,經常導致假訊號或假解析度的發生。近年來陳祺反⽽把研究的主軸轉向 a-SNOM,因為她更看重是否能由 AFM 得到的材料結構和高度,來解釋近場光學所量測的結果,以期研究材料背後的物理或化學現象。

-----廣告,請繼續往下閱讀-----

另外,陳祺近期最重要的突破是在⽔中完成 a-SNOM 的量測,將針尖與光學元件整合在自製的腔體(cage system)之中,得以在保持生物樣品的活性之下得到超高解析度的影像,這將是開啟利用近場光學研究⽣物課題的重要⾥程碑。

最後,⾝為擁有兩個孩⼦的女性研究員,「如何兼顧⼯作與家庭」或許是⼀般新聞媒體會問的問題。然⽽,陳祺分享⾃⼰的⼼得:「是不可能兼顧的啦!先集中精神做好⼀件事,等另⼀件要爆掉的時候再去救它。」可能坦承⾃⼰沒有辦法做好每件事, 反⽽讓陳祺在實驗上永遠能找到促使⾃⼰改進的動⼒。 

註解

註 1:量⼦穿隧電流:在量⼦世界中,物質同時具有波動和粒⼦的特性。因具有波動的性質, 當電⼦撞擊⼀層很薄的障礙物時,有不為零的機率穿過去,並產⽣穿隧電流(tunneling current )。穿隧電流與障礙物厚度成指數函數遞減,因此可藉由量測穿隧電流強度計算出待測物表⾯極微⼩的⾼低起伏。

科技大觀園_96
82 篇文章 ・ 1124 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

4

31
3

文字

分享

4
31
3
一窺生物分子私底下在幹嘛!低溫電子顯微技術原子等級突破
linjunJR_96
・2020/12/08 ・1462字 ・閱讀時間約 3 分鐘 ・SR值 530 ・七年級

-----廣告,請繼續往下閱讀-----

生物體中的蛋白質分子通常長得非常複雜,不是幾行化學式能解決的。如果想把它的分子結構鉅細靡遺的描繪出來,你有幾種選擇。

讓人類發現 DNA 雙股螺旋的 X 光晶體學

其中一個是 X 光晶體學,也就是讓許多蛋白質分子一同排列成整齊的晶體,接著將 X 光打進去,用繞射圖案進行分析。從 1950 年代以來,科學家便常常使用這種技術來探索分子結構。DNA 的雙股螺旋結構便是透過 X 光晶體學被發現。

圖 1/著名的 51 號照片 (Photograph 51)。葛斯林 (Raymond Gosling) 和富蘭克林 (Rosalind Franklin) 拍到了DNA晶體所繞射出的X型圖樣,帶領了華生與克里克等人提出了雙股螺旋的模型。圖/Raymond Gosling, King’s College London

不過這種方法有其根本上的限制。X 光晶體繞射後的強度很弱,必須藉由晶體內多個重複且整齊的晶格,進行同步繞射來增強訊號,因此沒辦法處理太大的蛋白質分子(單位體積內重複晶格太少),或是結構複雜的蛋白質(像是核糖體是由兩個次單元組成的),而且因為 X 光晶體學仰賴的是晶體結構的繞射,那些無法好好結晶的蛋白質,便不在它的防守範圍內,而細胞中許多的蛋白質都很難形成整齊的晶體。

另外,就算可以成功的結晶,被結晶的蛋白質分子也無法呈現出平常運作時的多種風貌,產生的影像也無法捕捉關於分子的任何動態資訊。

不斷跨越解析度門檻的低溫電子顯微技術

於是我們有另一個選項:低溫電子顯微技術 (cryo–electron microscopy) 。待觀察的分子被凍結在超低溫環境中,而研究人員用電子束轟炸分子,透過電子留下的影像來還原分子的立體結構。這種技術不需要蛋白質進行結晶,不過解析度普遍較差,最後的影像往往只能看出幾個模糊的團塊,因此通常只會用在大的蛋白質分子。

-----廣告,請繼續往下閱讀-----
近年來,低溫電子顯微的解析度有明顯的進步。左方為 2013 前的解析度,右方為 2013 年後。 圖/Martin Högbom, The Royal Swedish Academy of Sciences

隨著相關領域人員的持續努力,低溫電子顯微的解析度已經大有進展。2017 年的諾貝爾化學獎便是頒給三位科學家在高解析度低溫電子顯微技術方面的突破。前一陣子的紀錄保持者是日本團隊對缺鐵基蛋白 (apoferritin) 的研究,解析度到達 1.53 埃。不過如果想要清楚的呈現個別原子,解析度差不多需要到達 1.5 埃,還差了一些。

在今年十月 Nature 期刊的一篇最新研究中,一個跨國研究團隊利用改良過的電子束與分析軟體,成功達到了 1.25 埃以上的解析率,足以清楚標示出每顆原子的位置。

聽起來很厲害,不過這代表的是什麼?

低溫電子顯微技術的突破,有助於人類了解複雜蛋白質是如何運作的。圖/giphy

由於生物分子可以在行動中被降溫並「定格」,我們現在能夠清楚的看見蛋白質這類複雜的分子機械如何運作,清楚到每顆原子的動態都盡收眼底。毫無疑問地,這樣的技術將為分子與結構生物學帶來重要的進展。

-----廣告,請繼續往下閱讀-----

目前,原子等級的解析度只適用於結構較堅硬的蛋白質分子。做為下一階段的目標,研究團隊希望能將同樣的技術運用在一般柔軟的大型蛋白質結構,並達到一樣好的解析度。在結構生物學的領域中,使用低溫電子顯微鏡的研究人口逐年成長,而這次的技術突破有望繼續加速這個趨勢。

參考資料

  1. Yip, K.M., Fischer, N., Paknia, E. et al. Atomic-resolution protein structure determination by cryo-EM. Nature 587, 157–161 (2020).
  2. Cryo–electron microscopy breaks the atomic resolution barrier at last
  3. X-光晶體繞射學與結構生物學
所有討論 4
linjunJR_96
33 篇文章 ・ 837 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。