0

0
0

文字

分享

0
0
0

電晶體新秀走混搭風,威脅矽元素主導地位!

羅紹桀
・2014/06/29 ・1314字 ・閱讀時間約 2 分鐘 ・SR值 561 ・九年級

-----廣告,請繼續往下閱讀-----

viterbi-june24
混合奈米碳管(CNT)和氧化銦鎵鋅(IGZO)的混合電路鑲嵌在聚二甲基矽氧烷基板的聚酰亞氨薄膜上。 Credit: USC Viterbi, Chongwu Zhou

說到電子產業,矽元素恐怕不再獨占鰲頭。

近日在《自然通訊期刊》(Nature Communications)上發表的研究報告指出, 南加州大學維特比工程學院(USC  Viterbi of Engineering)研究團隊開發出一種混合電路,整合奈米碳管和其它薄膜電晶體,克服了奈米碳管的弱點、更加節能且具有延展性。

奈米碳管具有透明、高延展性而且製作成本低的特性,這種新式混合電路可以取代矽元素作為製作電子蕊片時的電晶體素材。

南加州大學維特比學院電氣工程教授周崇武博士(Dr.Chongwu Zhou)和研究生Haitian Chen(譯名)、Yu Cao和Jialu Zhang整合了奈米碳管薄膜電晶體和氧化銦鎵鋅薄膜電晶體研發出這種高效能的電路。

-----廣告,請繼續往下閱讀-----

周崇武表示:「我在2013年一月的時候想到了這個概念,在這之前,我們竭盡心力想把奈米碳管轉化成N型電晶體,有一天,我突然靈光一現,想到與其勉強奈米碳管做它不擅長的事,何不尋找另一種N型電晶體(這裡指氧化銦鎵鋅)素材來製造互補電路呢?」

這次的混合之所以成功,在於結合了奈米碳管和氧化銦鎵鋅兩者分別是P型電晶體和N型電晶體的特性,以製造種可以互補運行的電路,減少能量損耗並提升效率,如果只有奈米碳管發生作用,無法達到真正的高效能,氧化銦鎵鋅的參與提供了能源效率以增加電池壽命,藉由混合這兩種素材,它們各自發揮了優點並隱藏了劣勢。

周崇武教授以中國陰陽調和的哲學來比喻奈米碳管和氧化銦鎵鋅的結合,他表示:「兩者的結合就像對天造地設的夫妻,我們對於這個互補電路的概念感到興奮,我們相信它有很大的潛力。」

這種混合電路事實上有許多實際運用的潛力,包括有機發光二極體(OLEDs)、數位電路(digital circuits)、射頻辨識(RFID)標籤、感測器(sensors)、穿戴式電子產品(wearable electronics)、快閃儲存器(flash memory device)甚至汽車儀表板上的抬頭顯示器(head-up display)可能很快就會問世。

-----廣告,請繼續往下閱讀-----

這項新的技術在醫療方面也具有相當大的潛力,為了從病人身上得到如心跳速率或腦波數據等醫療資訊,以往硬性的電極會被安裝在病人身上的特定部位,現在利用這種新的整合電路,或許可以只安裝一個較大、延展性較強的電極探測病人的全身。

在這個研究中,周崇武博士與他的研究團隊避開了製造N型奈米碳管電晶體與P型氧化銦鎵鋅電晶體的難題,卻整合了P型的奈米碳管電晶體和N型的氧化銦鎵鋅電晶體,此舉大大地展現了電路整合的可能性。為了証實他們的理論,他們完成了包含1000個電晶體的刻度環振盪器。目前為止,所有以奈米碳管為基礎的電晶體佔大多數,共有200個電晶體。

「我們相信這是科技的一大突破,因為以前從來沒有人做過這件事。」周崇武的研究助理Haitian Chen表示:「這次的成功證明了我們可以進行更大尺度的電路整合,此法可以製造更複雜的電路。」

「數位電路可以應用在任何電子產品,具有無限的可能性。」Haitian Chen進一步說:「有一天印製電路會像印製報紙一樣簡單!」

-----廣告,請繼續往下閱讀-----

周崇武與Haitian Chen師徒都認為,奈米碳管相關科技,包含奈米碳管和氧化銦鎵鋅的整合技術會在將來的五到十年內商業化。

「我相信這只是一個開始,」周崇武表示:「我們期待看到更多有趣的成果。」

資料來源:

Move over, silicon, there’s a new circuit in town. phys.org [June 17,2014]

-----廣告,請繼續往下閱讀-----

 

文章難易度
羅紹桀
19 篇文章 ・ 3 位粉絲
目前在美國一家數位行銷公司當SEO分析師,特別愛Google的What People Also Ask功能所以還特地開了一個Youtube頻道專門分享各種關鍵字會觸發什麼PAA。 影片皆有中文字幕歡迎訂閱:https://www.youtube.com/channel/UClgRDretD9XNp3ydod8TIlA/videos

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

2
0

文字

分享

0
2
0
揭開 GaN 的力量:理解電路拓樸在設計中的重要性
鳥苷三磷酸 (PanSci Promo)_96
・2023/08/31 ・2948字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文由 德州儀器 委託,泛科學企劃執行。

從 IC 之父 Jack Kilby 在德州儀器發明世上第一顆積體電路,到現在已過了 65 年,而這項科技已經成為我們的日常,並且還在不斷進步。德州儀器不僅是積體電路的先驅者,更長期投資氮化鎵 (GaN) 的電源應用,例如資料中心伺服器電源、再生能源、或是小體積的電源供應器等,開發許多獨創的電路結構。在已到來的次世代半導體浪潮中,德州儀器早已站穩了腳步,成為高壓半導體領域的領導者。

氮化鎵作為新材料的崛起,已成為充電領域的新寵,甚至打敗了傳統的矽 (Si) 基充電頭。然而,要充分發揮氮化鎵的潛力,需要量身定制相對應的策略和戰術。

何謂電路拓樸?電路設計要考量什麼?

拓樸電路是氮化鎵最好的後勤部隊,能讓它發揮 100% 的力量。但這個拓樸電路又是什麼呢?

-----廣告,請繼續往下閱讀-----

先來談一下比較陌生的名詞「拓樸」。拓樸是幾何學中重要的概念,主要在研究物體在連續變化下時的不變性質。舉個數學家最愛的例子,就是研究如何把一個帶手把的馬克杯變成甜甜圈。這是什麼鬼題目?這就像問炭治郎什麼時候要開 5 檔,八竿子打不著吧?但對數學家來說,這個題目是可能的,因為帶手把的馬克杯和甜甜圈有個共通特徵,就是有一個洞!只要有這個共同特徵,我們確實就可以透過一系列的數學運算,將馬克杯變成甜甜圈。

undefined
在拓樸學中,有一個手把的馬克杯和甜甜圈是相同的。圖/wikimedia

舉例來說,漫威電影中班納博士變身成浩克,如果希望浩克的身上能看得出班納博士的影子,就必須用拓樸學先將班納博士的五官這些「特徵」定位好,製作成大家常看到有如網格的 3D 建模,變身成浩克時才不會整個走鐘(台語),臉部比例亂成一團。沒錯,拓樸解決的,是在兩種形狀間切換時,這些特徵與圖案的比例不會隨便亂跑,成為四不像的東西。

Final product image
用拓樸學先將班納博士的特徵定位好,製作成大家常看到有如網格的 3D 建模。出處:tutsplus

回到我們的氮化鎵電路,難道我們要利用拓樸學,把電路板的形狀變成一個甜甜圈或是浩克嗎?當然不是,這邊指的是用更少的元件、更低的延遲與漏電的設計,把相同功能的電路重新改寫配置。

簡單來說,電路拓樸就像是電路板上的藍圖,告訴我們如何把各種電子元件,比如電阻、電容、電感、電晶體等組織在一起,來完成我們想要的任務。

-----廣告,請繼續往下閱讀-----

每種電路拓樸都有它的優點和適用的場合。例如,Buck轉換器可以將輸入的電壓降低,適合用在需要較低電壓的應用上。Boost轉換器則可以提升電壓,適合用在需要較高電壓的應用上。LLC轉換器具有高效率和寬輸入電壓範圍的特性,適合用在需要高效率和靈活性的應用上。PFC(Power Factor Correction)則是一種用來提高電源效率的技術,它可以使輸入電流與電壓同步,減少能量損失等等。

Boost轉換器。出處:德州儀器
Buck轉換器。出處:德州儀器

然而,這些都是以矽為主的拓樸電路,為了充分發揮氮化鎵百分之百的潛力,我們不能僅僅依賴傳統的電路設計方法和拓樸,而是要重新塑造!

GaN+電路拓樸=最強?

那麼,我們要如何重新塑造才能全部發揮 GaN 的實力呢?讓我們以一種常見的電路拓樸—功率因數校正 PFC 為例。

PFC,是電路中的交通指揮,負責將電路中電流與電壓同步,以達到最佳的效率。在電訊號經過漫長電路之後,常常導致輸出的電流與電壓波形出現時間差,不再同步。我們知道功率等於電壓乘以電流,因此兩者好好配合,才能發揮最大效益,如果兩者沒有同步,就會降低整體電路的有效功率。

-----廣告,請繼續往下閱讀-----
高功率因數。出處:wikimedia
低功率因數。出處:wikimedia

PFC 功率因數修正電路,現在看到在做的事情,就是讓它們好好同步,降低無謂的能量浪費。目前世界各地許多法規都直接要求在電路中加入 PFC,提升用電效率。

那麼問題來了,同樣是 PFC 電路拓樸,現在我們有兩種設計,下方的圖 1-雙升壓 PFC,跟下方圖 2-圖騰柱 PFC。

圖 1、雙升壓 PFC。出處:德州儀器
圖 2、無橋接式圖騰柱 PFC。出處:德州儀器

依照我們希望體積盡可能小的需求,直覺來說你要選哪一個呢?

當然是圖 2,因為他看起來比較簡單嘛。可惜的是,市面上大多矽基半導體的 PFC,都是選擇圖 1 方案。因為圖 2 方案的簡約設計,前提是關鍵的二極體必須具備低的「反向恢復時間」。

-----廣告,請繼續往下閱讀-----

所謂反向恢復時間,指的是電晶體在電源切斷的瞬間,電晶體內仍有殘留電荷,會反向放電,造成電路阻塞。而矽基半導體過長的反向恢復時間,會導致電源損耗上升。反之,氮化鎵因為反向恢復時間為零,可以完全適應高效的圖騰柱 PFC。

這邊提到的 PFC 只是氮化鎵的其中一種運用,別忘了,除了零反向恢復時間外,它還有著能承受高電壓與高溫的特性,再加上低漏電率的關鍵被動技能,在目前的半導體戰場上,可說是最強的挑戰者。未來在各種電源供應器上,應該很快都能看見它的身影。

當然,講到這邊,都僅止在題本作答。在實際的晶片設計中,各元件間的距離與電路安排,都需要經過多次的試驗和調整,才能找到最適合的電路拓樸和元件配置,而這也正是德州儀器所擅長的領域。

德州儀器設計出的電源供應器,已經遍佈全世界的重要設備中。除了提供高效的能源供應,節省下的能源,也直接減少了許多碳排。根據估計,對一個 100 MW 的資料中心來說,換上 GaN FET 之後,就算只有提升 0.8% 的效率增益,在 10 年內就能節省多達 700 萬美元的能源成本。尤其在 AI、量子電腦等科技發展蓬勃的現在,在「節流」這一塊的投資,真的非常重要!

-----廣告,請繼續往下閱讀-----

看到這鋰,如果你也想訓練這個「黑科技」氮化鎵,打造更強的電路、為世界的節能貢獻一份心力。或甚至像 IC 之父 Jack Kilby 那樣,發展全新的電路架構,做出足以改變世界的創舉,德州儀器歡迎所有熱血人才加入,一起來改變世界吧!

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
1

文字

分享

0
3
1
洗澡時突然浮現:八叛徒的諾貝爾獎級專利,半導體的「平面製程」——《掀起晶片革命的天才怪咖:蕭克利與八叛徒》
親子天下_96
・2022/07/17 ・5127字 ・閱讀時間約 10 分鐘

一場淋浴的時間,革命性想法突然浮現

1959 年 1 月初,赫爾尼早上起床淋浴時,一個在他腦中深藏許久的念頭突然浮現出來,他似乎看到了一線曙光,可以解決令大家束手無策的困境!

赫爾尼早上起床淋浴時,一個在他腦中深藏許久的念頭突然浮現出來。 圖/envato

根據貝爾實驗室的技術手冊,當矽晶圓完成摻雜後,必須用溶劑把表面剩餘的氧化層全部清除乾淨。因為擴散法應該也會把雜質摻入氧化層裡,若沒有全部移除,被汙染的氧化層恐怕會影響電晶體的導電性。不過如此就會讓 p-n 接面裸露在外,所以才必須用金屬外殼加以密封。

赫爾尼當時就懷疑氧化層是否真的會被汙染,就算會,真的會影響電晶體嗎?

他覺得氧化層有隔絕保護作用,保留下來或許利大於弊,但貝爾實驗室與同事都說照著技術手冊做就對了。後來要忙著趕 IBM 的訂單,他就把這想法擱在一旁,未再深入研究,現在他才突然想到如果有氧化層擋著,掉落的金屬碎屑就接觸不到 p-n 接面,也就不會影響電晶體了。

-----廣告,請繼續往下閱讀-----

赫爾尼進辦公室後,連忙翻出當初所寫的筆記,重新整理謄寫。而在塗塗寫寫的過程中,腦中又冒出一個革命性的想法。

高臺式電晶體是先用擴散法在集極表面摻雜成基極,再用光刻技術在基極中央蝕刻出窗口,摻雜成射極。但何不一開始就用光刻技術做出基極?這樣底層的集極就不會全部被基極蓋住,集極、基極與射極三者都在同一平面,它們之間的 p-n 接面用同一層二氧化矽保護,只露出接腳的接觸點。由於電極彼此更靠近,效能會更好,而在製造上也更加簡單。

諾貝爾獎級的專利:平面製程

赫爾尼興奮的向諾宜斯與摩爾等人提出這個「平面製程(Planar process)」的構想,大家都半信半疑,違背技術手冊的指示,保留氧化層真的不會有問題嗎?不過目前也沒別的辦法,況且真的成功的話,不僅能解決眼下的問題,還能大幅提升電晶體效能與生產效率,讓快捷半導體的競爭力更上一層樓。他們決定放手一搏,同時趕緊找專利律師申請專利。

赫爾尼的平面製程概念(左圖)與高臺式電晶體(右圖)比較。平面製程的電晶體讓基極、射極和集極都在同一個平面上,並且都受到二氧化矽保護。圖/親子天下

「你們希望這項專利涵蓋哪些範圍?」專利律師開頭就先問這個問題。

-----廣告,請繼續往下閱讀-----

諾宜斯等人頓時都愣住了,不就電晶體嗎?律師才進一步解釋:「這平面製程不是一種製造方法嗎?除了電晶體,也可以用來製造其他半導體元件吧?」

摩爾見諾宜斯還在出神中,只好出聲回答:「當然可以。要的話,二極體、電阻、電容這些也都可以用平面製程,但意義不大,這些也不是我們的目標市場。」

「為什麼?」

「因為這些元件構造簡單,沒必要用平面製程,純粹看生產規模,規模越大,成本越低。這是德州儀器、雷神這些大公司的優勢,我們只能攻電晶體,以技術取勝。」

-----廣告,請繼續往下閱讀-----

律師點點頭:「那就只針對電晶體申請專利保護囉?」

「等一下!」神遊中的諾宜斯突然插進來,卻又思索了一下才說:「還是把其他半導體元件都納進來好了。別誤會,我沒有要做這些東西,只是剛剛想到——如果用平面製程把它們都放在同一片晶圓上呢?

大家不解的望著諾宜斯,只見他站起來走向黑板,一邊問大家:「你們想想,IBM 拿到我們的電晶體之後,再來呢?」

接著諾宜斯在黑板畫起一個一個小方塊,說:「他們得把電晶體、二極體、電阻、電容這些元件一個個銲接到電路板上。我估計全部至少有幾百顆,甚至上千顆吧,每顆都要接上金屬電路,還得有銲接的空間,結果元件本身所占的空間其實不到一半。」黑板上的圖就像幅地圖,上面坐落著一棟棟平房,空地與道路占了大片土地。

-----廣告,請繼續往下閱讀-----
電路板上的各種電子元件就像地圖上的房子,有大半的面積被空地與道路佔據,房子(電子元件)只占一小部分。 圖/Pixabay

「不只如此。」諾宜斯再用紅色粉筆在小方塊中間畫個小圈圈,說:「每個元件真正有用的只有這裡,其餘只是外殼包裝。你們看,如果只有這些小圈圈,讓它們彼此緊鄰在一起,空間就只有原來電路板的 5% 不到吧。」

大家似乎開始明白諾宜斯要說什麼,但貝仍疑惑的問道:「我可能沒你們懂,但怎麼可能沒有外殼,還緊鄰在一起?它們得有保護,彼此也得分開才不會漏電,不是嗎?」

赫爾尼微笑著替諾宜斯回答:「二氧化矽可以提供保護,也能用來區隔元件。我只想到多做一次光刻技術,但既然能做兩次,當然三次、四次、……要幾次都可以,就能把各種元件都做在一起。」

摩爾接著說:「而且蝕刻出的缺口不僅用於摻雜,也可以蝕刻出複雜的溝槽作為電路。既然每個元件的接觸點都在同一平面,便可以像印刷電路板那樣,直接把銅線印在溝槽上,原來在電路板上的電路就都整合在一個晶片裡了。諾宜斯,這真是絕妙的點子!」

-----廣告,請繼續往下閱讀-----

「這得感謝赫爾尼先想出平面製程。不過這只是個概念,具體上要怎麼做,摩爾,我們倆再一起研究。」

貝興奮的說:「這只要做出來,再貴我都賣得出去!我告訴你們,空軍的人一直在問我能不能做得更小呢。因為除了轟炸機,還有導彈、火箭也都要裝上電腦,它們的空間更小,電腦越小越好,到時候這些訂單非我們莫屬。」

被捷足先登的專利申請

的確如貝所說,美國政府正在傾全力推動太空計劃,並加強國防科技。因為蘇聯在 1957 年 10 月 4 日,毫無預警的發射第一顆人造衛星史普尼克一號(Sputnik 1),嚇了美國一大跳,發現原來蘇聯的太空科技竟然遙遙領先。萬一蘇聯將太空科技用於戰爭,勢必會取得空中優勢,甚至危及美國本土。

蘇聯第一顆人造衛星史普尼克一號(Sputnik 1)1 : 1等比模型。 圖/wikimedia

因此,美國政府除了要軍方強化飛機、飛彈與各項國防武器的性能,同時在 1958 年 10 月成立「國家航空暨太空總署(NASA)」,整合資源與各界人才,以求在這場太空競賽超越蘇聯。軍方與 NASA 都有龐大預算,為了盡速達成任務,都願意採用最新技術,花起錢來也毫不手軟,對快捷半導體而言正是大好時機。

-----廣告,請繼續往下閱讀-----

專利律師先針對平面製程申請專利,積體電路則還要等諾宜斯寫出具體方法,才能提出專利申請。不料,諾宜斯和摩爾尚在研究,3 月時竟然被捷足先登,德州儀器召開記者會,發表史上第一顆積體電路!

原來德州儀器的工程師基爾比(Jack Kilby)去年 6 月就提出積體電路的構想,然後在 9 月以手工做出一個晶片雛形,只有電晶體、電阻和電容三個元件,電路另外用金線銲接而成,雖然粗糙簡單,但確實能正常運作。如果德州儀器祭出專利保護,快捷半導體就無法開發積體電路這極具潛力的產品,嚴重影響公司的未來。

辭職風暴

屋漏偏逢連夜雨,在公司前途未卜之際,總經理鮑德溫竟然要辭職。諾宜斯等人錯愕又憤怒,要他當面說清楚。

貝先開口責問他:「鮑德溫,現在公司遇到問題,你身為主帥不面對處理,反而要先落跑,未免太現實了吧?」

-----廣告,請繼續往下閱讀-----

「我如果真的現實,去年 IBM 訂單問題搞不定時老早就走了。人總是有更高的目標要追求,就這麼簡單。」

羅伯特忍不住嗆他:「更高?你已經是總經理,權力、薪水與分紅都比我們幾個創辦人高,還有什麼不滿意?」

鮑德溫平靜的回答:「我很感謝你們的禮遇,但總經理也只是受聘的經理人,再怎樣也和你們幾位大股東沒辦法比。」

諾宜斯真摯的說:「你如果嫌認股權太少,可以提出來啊。」

鮑德溫嘆了一口氣說:「那就說開了吧。有家國防承包商願意出資,讓我成立公司製造電晶體,一些工程師也會跟我走。」

公司前途未卜之際,總經理鮑德溫選擇辭職離開。(示意圖) 圖/envato

「什麼,你也太沒道義了!」「了不起,主帥帶兵投靠敵營。」「你這叛徒!」「你膽敢偷走技術,就等著被告!」憤怒的斥責馬上此起彼落。

「你們有什麼資格說我?你們幾個不也是背叛蕭克利自立門戶?」鮑德溫馬上惱羞成怒,展開反擊:「我不過帶走十幾個人,你們對原公司造成的傷害才大吧。論道義,你們更沒道義!我本想大家好聚好散的,現在也沒什麼好說了。祝你們好運,再見。」說完即頭也不回的走出門外。

會議室裡一片沉寂,大家不約而同想到當年從蕭克利半導體實驗室集體請辭的情景:平時易怒暴躁的蕭克利竟然一句話都沒說,鐵青著臉直接走出辦公室。反倒是貝克曼跑來找他們曉以大義,發現無法挽回後,隨即變臉威脅要控告他們侵權洩密。沒想到如今換他們嚐到這滋味了。

諾宜斯先打破沉默:「我們來討論總經理人選吧。你們有沒有想到誰還不錯的?」

克雷納舉起手說:「我覺得不要再從外面找了,找來難保又跟鮑德溫一樣。就諾宜斯你來當吧,這一年多來,你應該也學到不少經營面的大小事了。」

大家紛紛附議贊同,這次諾宜斯也不再謙讓,決定扛下這重責大任,研發副總一職便交給摩爾。

摩爾趁此時報告積體電路的應對策略:「我們和專利律師討論過了,德州儀器雖然先申請積體電路的專利,但他們的電路仍得用銲接的,而諾宜斯結合了平面製程與印刷電路,這兩項技術都不在他們的設計裡,應該可以認定為新發明。所以我們決定還是申請專利,無論如何,總比棄械投降來得好。」

基爾比與諾宜斯兩人的積體電路設計對比。左圖是基爾比的設計,可以明顯看出電子元件上都有額外拉出的電線。而右圖是諾宜斯的設計就簡潔許多,電線和電子元件都是平整的放置在一個平面上。圖/親子天下

「沒錯,不用管別人,我們就照原先計劃往前走。等送出專利申請、做出樣品後,我們也要舉辦盛大的積體電路發表會,讓所有人知道誰的技術管用。」諾宜斯馬上展現了總經理的氣勢。

積體電路的專利申請於 1959 年 7 月送出,未待審核結果出爐,本身是發明家的費爾柴爾德就以實際行動展現對他們的信心與支持,提前於 10 月執行選擇權,依當初合約所載,用三百萬買下全部股權。

八叛徒當初每人拿出 500 元,如今兩年不到就換回 25 萬元,當然是美夢成真,也讓外界人人稱羨。不過,卻有兩個人看在眼裡頗不是滋味,那就是蕭克利與貝克曼。

將希望壓在四層二極體的蕭克利

諾宜斯等人出走時,蕭克利仍不認為自己有錯,他得到的教訓反而是認為國內這些心高氣傲的年輕人不聽話又沒忠誠度,不如從歐洲招募三、四十歲的博士,他們更加成熟穩定,好用多了。何況八叛徒本來不懂電晶體,都是他一手教出來的,現在換另一批人,他當然也可以在短時間內就讓他們上手。

因此,無論面對貝克曼或是外界的質疑,他都信心滿滿的堅稱集體離職事件不會有任何影響,實驗室仍將正常運作。

然而,就算貝克曼也這麼認為,他對蕭克利半導體實驗室已有不同想法了。1958 年,貝克曼將它從集團的附屬機構獨立出來為「蕭克利電晶體公司」,顯然已不想再燒錢打造另一個貝爾實驗室,而是要它像一般公司那樣盈虧自負。

蕭克利終於在 1959 年成功開發出 p-n-p-n 四層二極體,卻因為品質不穩定,未能如他原先預想的用於AT&T 的電話交換機;而軍方那邊也沒能賣出多少,以致公司繼續虧損。

貝克曼決定不玩了,剛好克里夫蘭一家傳統企業也想跨足半導體,而蕭克利的名聲仍有相當吸引力,便在 1960 年將公司賣給他們。

蕭克利倒不在意換新東家,反正他仍然在原地繼續做原來的事,只要解決四層二極體的品質問題,還是有機會從 AT&T 拿到源源不絕的訂單,到時所有人——尤其是八叛徒,就會知道他才是最後的贏家。

——本文摘自《掀起晶片革命的天才怪咖:蕭克利與八叛徒》,2022 年 7 月,親子天下,未經同意請勿轉載。

親子天下_96
26 篇文章 ・ 24 位粉絲
【親子天下】起源於雜誌媒體和書籍出版,進而擴大成為華文圈影響力最大的教育教養品牌,也是最值得信賴的親子社群平台:www.parenting.com.tw。我們希望,從線上(online)到實體(offline),分齡分眾供應華人地區親子家庭和學校最合身體貼的優質內容、活動、產品與服務。