0

0
0

文字

分享

0
0
0

天然氣:意外之財—《寫給未來總統的能源課》

azothbooks_96
・2014/04/28 ・3130字 ・閱讀時間約 6 分鐘 ・SR值 516 ・六年級

kk0371309英文的Windfall一詞源自於森林。在強風過後,不需太費力就可以容易收集到許多從高處掉落下來的樹枝。因此最原本的意思就是便宜、容易取得的能源。

在能源面貌上,最重要的新發展就是發現了頁岩(一種沉積岩)中豐富的天然氣的開採方式。這是一大筆新的意外之財。雖然我們早就知道頁岩裡蘊藏大量的天然氣,但是符合經濟效益的開採方式到最近才發展出來。這些可供開採的頁岩天然氣,是攸關美國未來的能源安全以及全球暖化最重要的新因素,也會對接下來數年 甚至數十年的經濟與政治決策產生重大的影響。

2001年時,根據美國能源部的資料,天然氣的證實蘊藏量不只有192兆立方英呎。由於美國每年開採20到24兆立方英呎的天然氣,因此應該在2010年之前天然氣就會全部用完。但是事實上, 到了2010年時,美國天然氣的蘊藏量已經增加到300兆立方英呎。 然後只不過經過了一年,美國能源資訊署(US Energy Information Administration)2011年估計的天然氣蘊藏量就暴增到862兆立方英呎。而一些跟我談過的天然氣專家相信,實際上的數字應該接近3000兆立方英呎或是更多。用意外之財來形容簡直是太客氣了。這些天然氣更像是美國老漫畫《亞比拿奇遇記》(Li’l Abner)裡一種奇怪的生物夏姆(shmoos),你用得越多,它們就變得越多。

怎麼會這樣呢?答案可能比你想的簡單:美國能源部認為在進行估計時,應該要保守一點,必須是符合高標準的天然氣才能算 進證實蘊藏量裡。天然氣公司則採取不同的標準,他們只希望氣井可以帶來良好的收益,所以會先找出手上可能最具生產力的天然氣田,然後進行開採。只有已經發現且可以開採供氣的天然氣田,才會被美國能源部歸類成證實蘊藏量。

-----廣告,請繼續往下閱讀-----

1966 年時美國天然氣有 1.6% 來自頁岩,到了2005年成長到4%,而2011年這個比例已經達23%。目前開採自頁岩的天然氣占全美天然氣產量的30%左右。這是一股正在進行中的天然氣熱,和過去的淘金熱一樣令人興奮且帶來豐厚的財富。《紐約時報》的形容是:「『它們就在那』山丘蘊藏有天然氣」。某種革命性的變革正在發生。圖表II.4 顯示了天然氣蘊藏量壯觀的成長歷程。

圖表II.4  美國頁岩天然氣產量的驚人成長。圖標所列為地質構造的名稱和所在地。
圖表II.4 美國頁岩天然氣產量的驚人成長。圖標所列為地質構造的名稱和所在地。

新的蘊藏量非常驚人,不只改變了能源面貌,還改變了全球政治。德州與加州原本建造用來進口天然氣的碼頭,已經重新改裝 成出口用。歐洲亟欲取得這些天然氣,以降低對俄羅斯天然氣的依賴。法國也蘊藏著大量的頁岩天然氣,現在每個國家都正在重新進行地質勘察。

由於天然氣的產量大增,某些產業專家相信天然氣的井口價格在未來的10到20年,都會維持在低檔,每千立方英呎4美元或更低。 在這本書撰寫時(2012年初),價格為2.5美元。(你可以從美國能源資訊部網站取得最新的報價)。對消費者而言,天然氣的成本大約是每千立方英呎12美元,但這個價格可能還會再下跌。你用同樣的價格可以取得3.4加侖的石油,但是天然氣可以提供2.5倍的能量。

為什麼美國不趕快轉換成天然氣?許多人已經在這樣做。美國許多大型電力公司已經開始以天然氣發電來取代燃煤發電。使用汽油的車子不需要更動引擎就可以容易改裝成天然氣燃料。最早改用天然氣的是卡車和計程車駕駛,他們對燃料的價格非常敏感。在美國,大約13萬台卡車和計程車已經改用天然氣。開發中國家對價格的敏感度比美國更高,在印度、中國和巴西已經有超過700萬輛車子改用天然氣而非汽油或柴油來作為燃料。他們無法負擔價格高昂的玩意。但美國的能源基礎建設非常龐大,因此需要時間轉換。天然氣的密度比汽油低,即使經過壓縮,所占的體積仍然是汽油的三倍。 因此大型的交通工具,像是卡車或公車,最容易進行轉換。壓縮後的天然氣每加侖所能提供的能量是電池的10倍,也將是純電動車真正的競爭對手。

-----廣告,請繼續往下閱讀-----

天然氣在未來幾年(或許幾十年)將會是我們主要的「替代燃料」,而且產油國已經開始擔憂天然氣帶來的競爭。沙烏地阿拉伯的瓦利德王子就曾經在2011年5月提到,他急於提供更多石油來促使石油的價格下跌。在過去,沙烏地阿拉伯通常都宣稱他們之所以德加石油供應量,是為了讓西方經濟保持活力,但是王子這次似乎更為坦率。他說(可能無意間違反了沙烏地的安全規定),「我們不希望西方國家去尋找替代能源,因為很明顯地,當石油的價格越高,他們就越有誘因去尋找替代能源。」對沙烏地阿拉伯而言,危險之處在於我們未來會發展出適合其他能源的基礎設施,因此最好讓油價維持在低檔,使得石油蘊藏量低的國家不去發展使用替代燃料的方法。

主要由甲烷所組成的天然氣,提供了美國將近1/4的能源需求。我們在家裡瓦斯爐用這種嗆鼻的氣體來烹煮食物,事實上天然氣是無臭無味的氣體。但是,如果忘了關瓦斯就會很危險,因此瓦斯公司添加了少量的硫醇,讓瓦斯聞起來像是蔬菜腐爛產生的臭味。

對在地底工作的煤礦工人來說,天然氣是可怕的敵人;我的祖父就曾經是賓州的煤礦工人。天然氣會吸附在煤炭的孔洞中,一旦氣穴破裂使得天然氣洩漏到礦坑中,就會造成工人因為窒息或爆炸喪生。早期在礦坑中會養金絲雀作為這種危險氣體以及一氧化碳的感測器。今天我們仍然會從煤礦中開採天然氣,通常是來自埋藏於地底深處、但礦脈太薄不值得開採的煤礦。這種煤層氣大多是以管子注入加壓後的水把煤礦壓裂以使天然氣釋出;現在也是用同樣的方法從頁岩中開採天然氣。

過去我們曾經使用一種非天然的氣體─煤氣,來點亮城市和家家戶戶,這種氣體是煤炭與水反應後所產生。煤氣主要是由氫氣 和劇毒的一氧化碳所組成。發現大量的甲烷後,這種「天然」的氣體就成為更安全也更便宜的選擇。用「天然」這個詞,一部分是出於行銷上的考量,好讓人們在家中使用時聽起來比較不危險(過去的確很危險)。

-----廣告,請繼續往下閱讀-----

美國在賓州以及隨即在德州發現石油時,天然氣不過是種副產物。這些天然氣原本溶在地底的石油裡,當石油被抽取到地面上壓 力減低之後,天然氣就釋放出來。過去這些「濕氣體」對油井公司來說是種困擾,因為無法用卡車或火車來運輸(當時還沒有將天然氣液化的技術),於是大多數的天然氣都在井口被燒掉。在部分開發中國家,仍然使用這種方式來處理油井天然氣,如圖II.5所示。

4690322325_d90866dc6a_z
圖 II.5 墨西哥灣的油井,仍燃燒天然氣。 (圖片來源:Deepwater Horizon Response@flickr)

目前已經不鼓勵用這種方式來處理油氣,因為這會增加排放到大氣中的二氧化碳,美國還發射了一具衛星來偵測世界各地燃燒油氣的情形。這具衛星取得的影像顯示,奈及利亞的油田仍然廣泛使用這種方式來處理油氣。對油田的擁有者來說,燒掉油氣在經濟上很合理,但是對那些缺乏能源、卻看得見火焰熊熊燃燒的鄰近民眾來說特別殘忍。目前全世界生產的天然氣中大約有5%是直接燒掉。

燒掉油氣現在已經被許多國家視為非法。從經濟上來看也有很好的理由避免燒掉油氣:這些天然氣可以打回油井裡,壓取出更 多的油,以提高所謂的「原油採收率」,並增加利潤。最壞的情況下,打回去的天然氣也可以存放在油井裡以供未來出售。這些天然氣也可以在冷卻到負162度後液化。天然氣冷卻液化後的體積可以縮小到原本的1/750,藉由冷凍油輪來大量運輸。卡達發展出來的超級油輪可以載運超過10萬噸天然氣。有些人擔心這麼巨大的油輪會成為恐怖份子的潛在目標。

事實上,天然氣本身並不會爆炸,必須要與空氣以適當的比例(5至15%)混合才會爆炸,並不會輕易發生。但是一種可能的危險是有些液化天然氣可能會接觸到水(或許因為恐怖份子的炸彈)而突然受熱成為氣體(專家稱之為「快速相變化」)。天然氣在氣態下的體積是液態的750倍,這種快速的膨脹是一種「物理性的」或「冷的」爆炸,可以進一步破壞油輪,然後釋放出更多的液態天然氣。

-----廣告,請繼續往下閱讀-----

 

摘自PanSci 2014四月選書《寫給未來總統的能源課》,由漫遊者文化出版。

文章難易度
azothbooks_96
53 篇文章 ・ 21 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

1

3
3

文字

分享

1
3
3
改良天然氣發電技術不會產生二氧化碳?灰氫、藍氫、綠氫分別是什麼?
PanSci_96
・2024/02/11 ・5656字 ・閱讀時間約 11 分鐘

用天然氣發電可以完全沒有二氧化碳排放?這怎麼可能?

2023 年 11 月,台電和中研院共同發表去碳燃氫技術,說是經過處理的天然氣,燃燒後可以不產生二氧化碳。

誒,減碳方式百百種,就是這個聽起來最怪。但仔細研究後,好像還真有這麼一回事。這種能發電,又不產二氧化碳的巫術到底是什麼?大量使用天然氣後,又有哪些隱憂是我們可能沒注意到的?

去碳燃氫是什麼?

去碳燃氫,指的是改良現有的天然氣發電方式,將甲烷天然氣的碳去除,只留下乾淨的氫氣作為燃燒燃料。在介紹去碳燃氫之前,我們想先針對我們的主角天然氣問一個問題。

-----廣告,請繼續往下閱讀-----

最近不論台灣、美國或是許多國家,都提升了天然氣發電的比例,但天然氣發電真的有比較好嗎?

好像還真的有。

根據聯合國底下的政府間氣候變化專門委員會 IPCC 的計算報告,若使用火力發電主要使用的煙煤與亞煙煤作為燃料,並以燃燒率百分之百來計算,燃料每釋放一兆焦耳的能量,就會分別產生 94600 公斤和 96100 公斤的二氧化碳排放。

如果將燃料換成天然氣,則大約會產生 56100 公斤的二氧化碳,大約只有燃燒煤炭的六成。這是因為天然氣在化學反應中,不只有碳元素會提供能量,氫元素也會氧化成水並放出能量。

圖/pexels

除了碳排較低以外,煤炭這類固體燃料往往含有更多雜質,燃燒時又容易產生更多的懸浮顆粒例如 PM 2.5 ,或是溫室效應的另一主力氧化亞氮(N2O)。具體來說,產生同等能量下,燃燒煤炭產生的氧化亞氮是天然氣的 150 倍。

當然,也別高興這麼早,天然氣本身也是個比二氧化碳更可怕的溫室氣體,一但洩漏問題也不小。關於這點,我們放到本集最後面再來討論。

-----廣告,請繼續往下閱讀-----

燃燒天然氣還是會產生二氧化碳?

雖然比較少,但也有燃煤的六成。像是綠能一樣的零碳排發電方式,不才是我們的終極目標嗎?別擔心,為了讓產生的二氧化碳量減到最小,我們可以來改造一下甲烷。

圖/unsplash

在攝氏 700 至 1100 度的高溫下,甲烷就會和水蒸氣反應,變成一氧化碳和氫氣,稱為蒸汽甲烷重組技術。目前全球的氫氣有 9 成以上,都是用此方式製造的,也就是所謂的「灰氫」。

而產物中的一氧化碳,還可以在銅或鐵的催化下,與水蒸氣進一步進行水煤氣反應,變成二氧化碳與氫氣。最後的產物很純,只有氫氣與二氧化碳,因此此時單獨將二氧化碳分離、封存的效率也會提升不少,也就是我們在介紹碳捕捉時介紹的「燃燒前捕捉」技術。

去碳燃氫又是什麼?

圖/pexels

即便我們能將甲烷蒸氣重組,但只要原料中含有碳,那最終還是會產生二氧化碳。那麼,我們把碳去掉不就好了?去碳燃氫,就是要在第一步把甲烷分解為碳和氫氣。這樣氫氣在發電時只會產生水蒸氣,而留下來的碳黑,也就是固態的碳,可以做為其他工業原料使用,提升附加價值。

-----廣告,請繼續往下閱讀-----

在氫氣產業鏈中,我們習慣將氫氣的來源做顏色分類。例如前面提到蒸氣重組後得到的氫氣被稱為灰氫,而搭配碳捕捉技術的氫,則稱為藍氫。完全使用綠能得到的氫,例如搭配太陽能或風力發電,將水電解後得到最潔淨的氫,則稱為綠氫。而介於這兩者之間,利用去碳燃氫技術分解不是水而是甲烷所得到的氫,則稱為藍綠氫。

但先不管它叫什麼氫,重點是如果真的不會產生二氧化碳,那我們就確實多了一種潔淨能源可以選擇。這個將甲烷一分為二的技術,聽起來應該也不會太難吧?畢竟連五◯悟都可以一分為二了,甲烷應該也行吧。

甲烷如何去碳?

甲烷要怎麼變成乾淨的氫氣呢?

很簡單,加溫就好了。

圖/giphy

只要加溫到高過攝氏 700 度,甲烷就會開始「熱裂解」,鍵結開始被打斷,變成碳與氫氣。

-----廣告,請繼續往下閱讀-----

等等等等…為了發電還要耗費能源搞高溫熱裂解,划算嗎?

甲烷裂解確實是一個吸熱反應,也就是需要耗費能量來拆散原本的鍵結。根據反應式,一莫耳甲烷要吸收 74 千焦耳的熱量,才會裂解為一莫耳的碳和兩莫耳的氫氣。但是兩莫耳的氫氣燃燒後,會產生 482 千焦耳的熱量。淨能量產出是 408 焦耳。與此相對,直接燃燒甲烷產生的熱量是 891 千焦耳。

而根據現實環境與設備的情況,中研院與台電推估一公噸的天然氣直接燃燒發電,與先去碳再燃氫的方式相比,發電量分別為 7700 度和 4272 度。雖然因為不燃燒碳,發電量下降了,但也省下了燃燒後捕存的成本。

要怎麼幫甲烷去碳呢?

在近二十幾年內,科學家嘗試使用各種材料作為催化劑,來提升反應效率。最常見的方式,是將特定比例的合金,例如鎳鉍合金,加熱為熔融態。並讓甲烷通過液態的合金,與這些高溫的催化劑產生反應。實驗證實,鎳鉍合金可以在攝氏 1065 度的高溫下,轉化 95% 的甲烷。

-----廣告,請繼續往下閱讀-----

中研院在 2021 年 3 月,啟動了「 Alpha 去碳計畫」,進行去碳燃氫的設備開發。但團隊發現,盡管在理論上行得通,但實際上裝置就像是個不受控的火山一樣,熔融金屬與蒸氣挾帶著碳粒形成黏稠流體,不斷從表面冒出,需要不斷暫停實驗來將岩漿撈出去。因此,即便理論上可行,但熔融合金的催化方式,還無法提供給發電機組使用。

去碳燃氫還能有突破嗎?

有趣的是,找了好一大圈,驀然回首,那人卻在燈火闌珊處。

最後大家把目光放到了就在你旁邊,你卻不知道它正在等你的那個催化劑,碳。其實過去就有研究表明碳是一種可行的催化劑。但直到 201 3年,才有韓國團隊,嘗試把碳真的拿來做為去碳燃氫的反應催化劑。

圖/pexels

他們在高溫管柱中,裝填了直徑 30 nm 的碳粒。結果發現,在 1,443 K 的高溫下,能達到幾乎 100 % 的甲烷轉化。而且碳本身就是反應的產物之一,因此整個裝置除了碳鋼容器以外,只有碳與氫參與反應,不僅成本低廉,要回收碳黑也變得容易許多。

-----廣告,請繼續往下閱讀-----

目前這個裝置需要加緊改良的,就是當碳不斷的積蓄,碳粒顆粒變大,反應會跟著下降。如何有效清除或更換濾網與反應材料,會是能否將此設備放大至工業化規模的關鍵。

最後,我們回頭來談談,在去碳燃氫技術逐漸成熟之後,我們可能需要面對的根本問題。

天然氣是救世主,還是雙面刃?

去碳燃氫後的第一階段,還是會以天然氣為主,只混和 10 % 以下的氫氣作為發電燃料。

這是因為甲烷的燃燒速度是每秒 0.38 公尺,氫氣則為每秒 2.9 公尺,有著更劇烈的燃燒反應。因此,目前仍未有高比例氫氣的發電機組,氫氣的最高比例,通常就是 30 % 。

目前除了已成功串連,使用 10 % 氫氣的小型發電機組以外。台電預計明年完成在興達電廠,使用 5 % 氫氣的示範計畫,並逐步提升混和氫氣的比例。根據估計,光是 5 % 的氫氣,就能減少每年 7000 噸的二氧化碳排放。

-----廣告,請繼續往下閱讀-----

但隨著天然氣的使用量逐步提高,我們也應該同時留意另一個問題。

天然氣洩漏導致的溫室效應,是不可忽視的!

根據 IPCC 2021 年的報告,若以 20 年為評估,甲烷產生的溫室效應效果是二氧化碳的 82.5 倍,以 100 年為評估,效果為 29.8 倍,是僅次於二氧化碳,對於溫室效應的貢獻者第二名。這,不可不慎啊。

圖/unsplash

從石油、天然氣井的大量甲烷洩漏,加上運輸時的洩漏,如果沒有嚴格控管,我們所做的努力,很有可能就白費了。

非營利組織「環境保衛基金」曾在 2018 年發表一篇研究,發現從 2012 到 2018 年,全球的甲烷排放量增加了 60 % ,從煤炭轉天然氣帶來的好處,可能因為甲烷洩漏而下修。當然,我們必須相信,當這處漏洞被補上,它還是能作為一個可期待的發電方式。

圖/giphy

另一篇發表在《 Nature Climate Change 》的分析研究就說明,以長期來看,由煤炭轉為天然氣,確實能有效減緩溫室氣體排放。但研究也特別提醒,天然氣應作為綠能發展健全前的過渡能源,千萬別因此放慢對於其他潔淨能源的研究腳步。

去碳燃氫技術看起來如此複雜,為什麼不直接發展綠氫就好了?

確實,綠氫很香。但是,綠氫的來源是電解水,而反應裝置也不可能直接使用雜質混雜的海水,因此若要大規模發展氫能,通常需要搭配水庫或海水淡化等供水設施。另外,綠氫本來就是屬於一種儲能的形式,在台灣自己的綠能還沒有多到有剩之前,當然直接送入電網,還輪不到拿來產綠氫。

圖/unsplash

相比於綠氫,去碳燃氫針對的是降低傳統火力發電的碳排,並且只需要在現有的發電廠旁架設熱裂解設備,就可以完成改造。可以想像成是在綠能、新世代核能發展成熟前的應急策略。

當然,除了今天提到的灰氫、藍氫、綠氫。我們還有用核能產生的粉紅氫、從地底開採出來的白氫等等,都還沒介紹呢!

除了可以回去複習我們這一集的氫能大盤點之外,也可以觀看這個介紹白氫的影片,一個連比爾蓋茲都在今年宣布加碼投資的新能源。它,會是下一個能源救世主嗎?

最後,也想問問大家,你認為未來 10 年內,哪種氫能會是最有潛力的發展方向呢?

  1. 當然是綠:要押當然還是壓最乾淨的綠氫啦,自產之前先進口也行啊。
  2. 肯定投藍:搭配碳捕捉的藍氫應該會是最快成熟的氫能吧。
  3. 絕對選白:連比爾蓋茲也投資的白氫感覺很不一樣。快介紹啊!

什麼?你覺得這幾個選項的顏色好像很熟悉?別太敏感了,下好離手啊!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

所有討論 1
PanSci_96
1219 篇文章 ・ 2193 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
2

文字

分享

0
3
2
邁向淨零排碳的未來:去碳燃氫技術!
研之有物│中央研究院_96
・2022/12/10 ・6194字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|廖英凱
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

高排碳發電方式的轉型

氣候變遷是全球議題,為了降低碳排放,發展低碳電力相當重要。臺灣目前主要使用天然氣發電,雖然排碳量較燃煤發電低,仍屬高碳排的發電方式,若未來要達到 2050 淨零排放,勢必要開發更多的低碳電力。

中央研究院「研之有物」專訪院內物理研究所陳洋元研究員,他與團隊應用天然氣催化裂解的理論,突破各種技術限制,打造出「去碳燃氫」(methane pyrolysis)裝置,使得燃氣發電可以更進一步減少碳排放,目前成果已接近歐盟需求,並預計陸續擴大運用至商用發電機組。

陳洋元向研之有物團隊介紹「去碳燃氫」技術。
圖|研之有物

因人類工業活動排放的二氧化碳而導致的氣候變遷問題,已是當代人類亟欲解決的難題。近幾年,國際組織與科學機構也不斷地強調減少碳排放的必要,以及調整減碳標準。2014 年聯合國政府間氣候變化專門委員會(IPCC)的綜合評估報告指出,人類應在 2100 年以前削減 90% 的碳排。

-----廣告,請繼續往下閱讀-----

但到了 2018 年的全球暖化特別報告時,IPCC 則將標準加嚴,人類需在 2050 年時達到「淨零排放」,亦即「人為溫室氣體的排放量,扣除透過碳匯碳捕等移除量後為零」。2021 年下半年,世界各大工業國也陸續提出在 2050 年前後達到該國淨零排放的政策目標和政策路徑。

在世界潮流的推動下,2021 年 4 月總統蔡英文在世界地球日的活動,宣示臺灣將努力在 2050 年達到淨零排放。同年中研院在廖俊智院長的主導下,啟動了「Alpha 去碳計畫」,院內物理所的陳洋元研究員與研究團隊也開始為臺灣的「去碳燃氫」技術建立基礎。

把天然氣變成氫氣,真的可能嗎?先來看看過去科學家怎麼做吧!

降低天然氣碳排的方法

為能達到降低碳排的能源轉型,又需兼顧產業發展的用電需求,臺灣目前的能源規劃,預估在 2025 年時,再生能源發電量佔比約 15.2%,其餘則為 45% ~60% 的燃氣發電與 25% ~40% 的燃煤發電所組成,到 2050 年時,樂觀理想情境中再生能源發電量佔比可逾 60%,剩下則以燃氣發電為主。

-----廣告,請繼續往下閱讀-----

儘管燃燒天然氣(甲烷)的理論排碳量,約只有燃燒煤炭的一半,但每燃燒 1 噸的甲烷,仍會產生 2.75 噸的二氧化碳排放,這與淨零排放的目標,仍有相當大的差異。因此,當代天然氣的運用,必須回應如何有效降低碳排放。

大抵來說,降低天然氣的碳排可以分成兩種不同方向的策略,其一是「碳捕捉、再利用與封存carbon capture, utilisation and storage, CCUS)」,方式是將燃燒後的二氧化碳,捕捉下來再利用,如應用於綠藻養殖、水泥製造等,或是將二氧化碳壓縮後封存於耗竭油氣庫這種地質結構上的特殊封閉構造,或是封存於海底富含鹽水的地層構造。

碳捕捉、再利用與封存(CCUS),就是將燃燒產生的二氧化碳,收集與分離出來,拿去工廠再利用或是封存於特殊地層。
圖|研之有物(資料來源|聯合國歐洲經濟委員會

然而碳捕存的技術與概念新穎且須有特定地質條件配合,要能達到具規模的運用仍有相當技術門檻需突破,且碳捕存在臺灣多年來也持續面臨政治及環保爭議,發展進度緩慢。

另一種策略方向,則是「燃料轉換」,將化石能源的天然氣,全部或部分替換為零碳的能源,例如利用微生物分解利用農業等方式生產的有機物質來產生「生質甲烷」(註1)作為燃料;利用大量的無碳電力,電解水後分解為氫氣和氧氣,再將氫氣做為燃料;或是再利用無碳電力將二氧化碳與氫氣合成為甲醇、甲烷、氨等「載氫劑(hydrogen carrier)」以利運送和利用。

-----廣告,請繼續往下閱讀-----

還有一種備受矚目的燃料轉換方式,是直接將甲烷裂解為氣態的氫氣和固態的碳黑(carbon black):

只要有足夠的能量,甲烷就能裂解為固態碳和氫氣。
圖|研之有物

其核心原理為,若能提供甲烷分子每莫耳 74 千焦耳的能量,就能把碳原子與氫原子的鍵結打斷,而關鍵在於如何提供能量以及如何提升使用能量的效率。

1999 年,M. Steinberg 發現當溫度夠高時,甲烷鍵結被打斷的效率隨之提升,而提出「甲烷熱裂解」(thermal decomposition of methane, TDM)技術,該技術是將甲烷處於高於 700°C 的高溫環境,使甲烷裂解為氫氣與固體的碳。固體碳可以穩定的儲存,不會增加大氣中的二氧化碳,也可以做為工業生產的原物料使用。

為進一步提升甲烷分解的效率與商業價值,近二十餘年來,許多針對 TDM 的研究,引入了各種催化劑,作為熱解甲烷的反應環境。目前常使用特定比例的惰性合金作為催化劑,將合金加熱成熔融態,當甲烷氣體通過液態合金時,即開始分為氫氣與固態碳。

-----廣告,請繼續往下閱讀-----

加熱溫度越高、氣體通過的熔融合金管柱越長,則甲烷熱裂解的程度越高,例如以一公尺長的管柱環境,利用不參與反應的 1175°C 熔融錫金屬,則可轉化 78% 的甲烷;利用具催化性的熔融金屬如 27% Ni–73% Bi 合金,則可在 1065°C 達成 95% 之甲烷轉化

如圖所示,此為天然氣裂解的簡易流程,當天然氣進入管柱時,需要熔融合金 Ni-Bi 作為催化劑,以便在高溫環境下轉化為固態碳(C)和氫氣(H2)。
圖|研之有物(資料來源|Science

為什麼需要催化劑?為了降低化學反應的難度。

化學反應的過程就像冒險者從小鎮(反應物)出發,克服山頂上的巨龍(活化能),並取得山谷寶藏(生成物)。而催化劑就像是幫冒險者開外掛的流浪法師,短暫加入冒險者一伙,開啟原本沒有的秘密通道,讓冒險者不用打龍就輕鬆取得寶藏。
圖|研之有物(資料來源|chemorphesis

實際運用上的限制與問題

以裂解方式生產氫氣的技術,有可能會成為未來氫能發展最主流的方向,歐盟針對氫能發展的預估中,即認為到 2050 年時,歐盟所使用的氫能會有 55% 來自於甲烷裂解,有 30% 來自目前化工產業較成熟使用的天然氣重組,以及 15% 來自於水電解產氫。

因此,2021 年 3 月起,在廖俊智院長的主導下,中研院啟動了「Alpha 去碳計畫」,目的在發展熱催化、電漿裂解等各種技術方法,以達成去碳產氫的發電目標。物理所陳洋元研究員的團隊,也開始在院內建構甲烷熱裂解的裝置,試圖為我國建立起去碳燃氫的技術基礎。

然而,儘管催化性熔融金屬的理論可行,在實務運作上此方法卻有其瓶頸,陳洋元研究員的團隊發現,當裂解後產生的氫氣和碳從熔融金屬表面冒出時,熔融金屬的蒸氣會把碳包住而在金屬表面變成如岩漿般的黏稠流體,必須不斷暫停實驗把岩漿給撈出去,使得學理上雖可高效率地裂解甲烷,但仍難以放大規模至發電機機組或提供給發電業使用。

-----廣告,請繼續往下閱讀-----
上述催化性熔融金屬用在天然氣裂解,理論上可行,但是陳洋元團隊實作發現,熔融金屬的蒸氣會把碳包住,會在金屬表面(如管壁)形成岩漿般的黏稠流體,必須不斷暫停實驗,把廢碳渣撈出去。
圖|研之有物(資料來源|Science、陳洋元)

體認到催化性熔融金屬的限制後,陳洋元研究員開始尋找其他也可具有類似催化效果的材質。其中一種可行的催化劑,就是碳黑本身。過去針對催化反應的研究中,即發現碳本身即是一種理想的催化劑。在甲烷裂解的過程中,研究者可以透過利用不同形式、結構與表面積的碳,來調控碳的催化活性

2013 年,韓國研究者 Seung Chul Lee 等人提出用碳黑作為催化劑的甲烷熱裂解裝置設計,其概念是將高溫管柱中,裝填直徑 30 nm 的碳粒作為催化劑,使甲烷通過高溫碳粒時,被催化裂解為氫氣和碳,再透過集塵器與過濾器捕捉碳黑。

2013 年韓國 Seung Chul Lee 等人提出了利用碳黑作為催化劑的甲烷熱裂解裝置。
圖|Korean Journal of Chemical Engineering

雖然概念裝置已提出逾十年,但至今市面上仍未有成功商業化與量產的設備。由於催化劑和裂解後的碳都是相同的物質,因此隨反應時間增加,實驗裝置中的碳黑會不斷吸附。

因此,該實驗設計若要能用於實務上的燃氣電廠減碳,關鍵就在如何能維持或定時減少高溫管柱中積存的碳;如何能延長集塵設備與濾網的更換週期,以須確保裝置能不間斷的長時間運作;以及如何與既有燃氣機組的系統結合。

-----廣告,請繼續往下閱讀-----

Alpha 去碳計畫:以局部比例的氫氣代替甲烷

面對過去研究的基礎與限制,中研院的團隊已在開發利用碳黑作為催化劑的甲烷熱裂解裝置,且能搭配自動化的清除積碳、與更新集塵、過濾器,使熱裂解裝置能持續性地運作。

熱裂解的裝置設計上,也並非追求極致的甲烷轉換率,由於氫氣比甲烷擁有更劇烈的燃燒反應,如在空氣中的燃燒速度,甲烷為 0.38 公尺/秒,但氫氣則高達 2.9 公尺/秒,這使得氫氣爆燃的衝擊力遠大於甲烷。

因此,目前仍未有純氫氣或高比例氫氣的商品化發電機組,而多以在甲烷中混合 10% ~30% 的氫氣,達到局部比例的減碳,因此在裝置設計上,須同步調控所產製氫氣與甲烷的比例,使發電機能持續燃燒固定成分比例的甲烷氫氣混合物。

中研院天然氣熱裂解裝置的實體照片。天然氣高溫裂解系統,包含:控溫電子儀器、高溫爐與流量計。放大區域顯示高溫爐上面的構造,白色為隔熱棉,石英管管壁已經有少許的碳渣附著。
圖|研之有物(資料來源|陳洋元)

從減碳效益來比較傳統天然氣發電和部分比例的去碳燃氫發電,以目前大潭電廠最新燃氣機組的熱效率 60% 來計算,每噸天然氣燃燒,可提供 9300 度的發電量,並排出 2.75 公噸的二氧化碳。

-----廣告,請繼續往下閱讀-----

但若能將其中 30% 的甲烷高溫裂解後,將氫氣與天然氣混燒,因氫氣的燃燒熱較低,且需額外提供裂解所需的能量,此時每噸天然氣則能發出 7400 度的電量,但碳排放降低為 1.92 公噸的二氧化碳,並生產 0.225 公噸的固體純碳。

也就是說,以大潭燃氣電廠為例,若將 30% 的甲烷裂解,產生氫氣與天然氣混燒,最終是以減少 20% 的發電量為代價,換得 30% 的減碳效益,以及具有精密工業、高產值化工業運用潛力的高純度碳黑原料。

目前中研院的 Alpha 去碳計畫已完成了將甲烷熱裂解裝置與 13 kW 天然氣發電機串聯,混燒 10% 氫氣燃料的概念驗證。

預計在 2025 年以前,將陸續擴大至針對建築物規模使用的 65 kW 燃氣渦輪發電機;和針對廠房、工商業用途使用的 1~2 MW 商用燃氣機組;以及與既有大型燃氣電廠使用的 170 MW 燃氣機組結合,以此建立我國去碳燃氫的產業鏈。

中研院將與業界合作,目標在 2025 年以前,推出裂解效率可達 40% 的去碳燃氫裝置,使臺灣天然氣發電的碳排達到歐盟訂定的永續標準。

開闢臺灣淨零排放的路徑

面對氣候變遷的威脅,世界各國無不積極且緊迫地尋找能達到零碳排放的方式,然而多數國家在有限的自然資源條件下,風力與太陽光電等再生能源的發電規模和穩定程度仍遠不及大型發電廠。

因此 2021 年起世界各國,相繼提出了符合淨零與永續精神的天然氣使用規準。2022 年 2 月,歐盟批准了有助實現歐盟環境目標的「永續活動分類法」與「氣候授權補充法案」,其中針對燃氣發電廠的規範,是要求 2035 年以前須完全由天然氣轉向低碳燃料或再生能源燃料;或是 2030 年前施工但每度電少於 270 克二氧化碳排放量,才能獲得永續金融投資的優惠。

以此作為標準來檢驗目前臺灣的燃氣發電,較先進且尚有機組興建中的大潭發電廠,碳排係數約低於每度電 388 克二氧化碳排放,若能順利搭配裂解效率 30% 的去碳燃氫技術,則碳排係數可降為每度電 271.6 克二氧化碳排放,幾乎符合歐盟的標準。

若再能輔以部分比例的生質甲烷混燒,排出二氧化碳又有部分比例利用碳捕存處理,至少就能使我國在未來最主要使用的天然氣,能符合目前歐盟看待永續能源的標準。

目前中研院陳洋元團隊打造的去碳燃氫技術,能利用臺灣既有天然氣和燃氣電廠的基礎建設,維持穩定的基載電力供給,又能達到減碳的效益,預計將是未來幾年內,能有效提供臺灣減碳成果的重要技術方向。

然而,去碳燃氫技術也因減碳目的而降低燃氣的發電量,這會使臺灣已經擴大天然氣使用的政策方向還要更加強化,如增加更多的天然氣進口量,興建更多的天然氣接收站、儲存槽與管線。近年烏俄戰爭帶來世界性天然氣的短缺,以及第三天然氣接收站的興建帶來海岸生態的危害,使用天然氣仍有難以忽視的環境與社會風險。

中研院的去碳燃氫技術,可能不是淨零未來的唯一選項,但傾力推動這項技術,才有機會在邁向淨零未來的過程中,爭取到足以讓永續與潔淨能源普及的時間。

中研院陳洋元團隊打造的「去碳燃氫」技術,利用臺灣既有天然氣和燃氣電廠的基礎建設,維持穩定的電力供給,又能達到減碳的效益,預計將是未來幾年內,能有效提供臺灣減碳成果的重要技術方向。
圖|研之有物

註解

  • 註1:生質甲烷的概念是,透過微生物分解農業生產的有機物質,由此生產甲烷,這種有機物的碳,是來自植物光合作用的固碳反應。因此理論上不會使用到地底下的化石碳,比天然氣還要減碳。

延伸閱讀:

研之有物│中央研究院_96
296 篇文章 ・ 3415 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

4

32
4

文字

分享

4
32
4
別用愛了,用冰發電吧!——可燃冰的發現、應用及油氣能源的未來
Chih-Chen Huang_96
・2022/02/23 ・6224字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

能源與環保間的平衡在全球一直都是十分火熱的議題。火力發電、核分裂發電等高效率的發電方式,或許會對環境及生物造成永久危害;風力發電、大陽能電池等綠能,受限於天候而無法廣泛應用;乾淨又有效率的核融合發電仍在開發階段,還不到可以商用的程度。那麼,通往乾淨能源的這條路,是否就這樣被插上此路不通的標示牌呢?當然不!因為可燃冰為我們另闢了一條蹊徑。

圖一 :正在燃燒的可燃冰。圖/參考文獻 1

那麼,可燃冰究竟是什麼呢?是否如同字面上,是一種可以燃燒的冰?如果是,是何種機制會使冰能被點燃;如果不是,那麼它是怎麼形成冰晶狀態的呢?若你好奇的話,請讀下去吧!本篇會從可燃冰本身、其應用與開採問題,全面地介紹這種新能源。

可燃冰的性質

可燃冰又稱為「天然氣水合物」,其中,甲烷氣體若佔總天然氣的 99%,則稱為「甲烷水合物」。直接觀察它被點燃的樣子,就像是一塊能燃起火焰的冰塊,這也是「可燃冰」一稱的由來。然而,確切來說,這顆「冰塊」其實是水和甲烷氣體在低溫高壓下混合形成的類冰物質。也就是說,可燃冰其實不是冰,而是由水分子組成的一個個「水籠」。如圖二,籠中包含大量的甲烷氣體,因此便不難理解它被稱為「甲烷水合物」的原因。或許你十分好奇水籠的模樣,不過在那之前,我們必須先談談組成水籠的柵欄——氫鍵。

圖二:可燃冰是由水分子組成的一個個「水籠」。圖/參考文獻 2

(一)、氫鍵

氫鍵為組成可燃冰結構舉足輕重之角色,而為介紹水籠及避免混淆重點,氫鍵概念皆舉水(簡式 H2O)為例。顧名思義,氫鍵是一種以「已結合 1 個氧原子的氫原子」為中心,與另一個氧原子所形成的「作用力」。沒錯,氫鍵並沒有產生實際的鍵結,本質上反而是一種電磁力。這個概念或許有點抽象,不過我們可以用小朋友吃蛋糕的例子來理解。

現在,老師分蛋糕給一群小朋友,高年級的小朋友可以分到比較多塊且口味不同的蛋糕,而低年級的小朋友則只有一塊蛋糕。分完蛋糕後,低年級的小朋友會跑去坐在大哥哥旁邊吃蛋糕,因為當他拿出一半的蛋糕分享時,大哥哥也會分享一半的蛋糕給他,如此一來,他們都能吃到 2 種口味的蛋糕。若低年級的小朋友還想再和別人分享一次,他就必須擁有第二塊蛋糕。然而,我們都知道他已經沒有多的蛋糕了,所以他會跑到另一個擁有蛋糕的大哥哥旁邊看著他,希望這個大哥哥能和他分享蛋糕。

-----廣告,請繼續往下閱讀-----

看完這個故事,我們可以把蛋糕替換成電子、低年級生替換成氫(價電子數為 1),而擁有很多蛋糕的大哥哥即為擁有許多電子的氧(價電子數為 6)。因此,如圖三(A)所示,當氫和氧各提供 1 個電子時,便會形成共價鍵。同時,已將電子用光的氫,會與另一顆帶有 2 個多餘電子——或稱作「孤電子對」(lone pair)——的氧形成氫鍵。

圖三(A):氫鍵結構。圖/黃之辰繪

其形成原因則如圖三(B),當氫用掉唯一的電子後,部分氫原子相對帶正電,會與另一個擁有孤電子對的原子互相吸引,故部分原子帶負電的氧原子互相吸引。這個吸引力就是氫鍵,並且由於其成因,我們可以說氫鍵就是一種電磁力。

圖三(B):氫鍵形成原理。圖/黃之辰繪

(二)、水籠

當許多個水分子以氫鍵結合時,水籠便形成了。

圖四:水分子間的氫鍵。圖/參考文獻 3

事實上,水籠分為許多種類,有結構 Ⅰ 型水合物、結構 Ⅱ 型水合物以及結構 H 型水合物。如下方圖五,在以單位晶格的尺度下觀察,結構 Ⅰ 型為的水合物是以 2 個五角十二面體(512)的小籠,和 6 個十四面體(51262)的大籠所組成。

-----廣告,請繼續往下閱讀-----

這時,你可能會好奇:為什麼是這個組合呢?讓我們來想想拼圖。當我們拿起一塊拼圖,會發現它會有凸出、凹陷,或是平平的不凸出也不凹陷等 3 種樣式的「邊」,或許是 4 個凸出、3 個凸出 1 個凹陷、2 個凸出 2 個凹陷,或是 1 個平平的邊加上 3 個凹陷……。這時,如果我們拿起一塊有「4 個凸出」的拼圖,那麼我們能把另外一塊也是 4 個凸出的拼圖拼在原本的那塊上嗎?

顯然無法。因此,如果我們要將拼圖拼起來,就需要拿出另外 4 片有凹陷的拼圖,各接在原本那塊拼圖上,才能逐漸將這副拼圖拼完。這個「拼拼圖」的概念也就是為什麼水籠結構會需要不同的立體形狀組成了,因為這些不同的形狀負責「鑲嵌」彼此,從而形成一個完整的、沒有空隙的拼圖,也就是這個堅固的水籠。

接下來讓我們繼續介紹另外 2 種結構。結構 Ⅱ 型則以 16 個五角十二面體,加上另一種十六面體(51264)的大籠結合而成;結構 H 型則分別由 2 種小籠—— 3 個五角十二面體,及 2 個十二面體(435663)——與二十面體(51268)大籠組成。其中,不論是大籠或小籠,每個籠中皆包含 1 個甲烷分子。

值得注意的是,甲烷水合物屬於結構 Ⅰ 型水合物,且其分子式為 CH4·8H20。理論上來說,一單位晶格內應含有 8 個甲烷分子與 64 個水分子。然而,由於可燃冰晶體中的水可與鄰近的 2 個水籠共用,因此一單位晶格內實際上只有 46 個水分子,而這也是當我們將可燃冰轉化後,可以產生大量天然氣的原因。

圖五:各類水籠結構及組成。圖/參考文獻 4

二、可燃冰的誕生

上文有提到水和甲烷能在低溫高壓之下生成可燃冰。那麼,是什麼環境才會包含大量的水、足夠的天然氣,同時又有低溫高壓的特性呢?沒錯,就是海洋!現在,我們已經有足夠多的水了,但要如何在海中找到大量的甲烷呢?以大西洋的布雷克海脊(Blake Ridge)為例,含有甲烷的沉積物稱為「氣水化合物穩定帶」(GHSZ,GasHydrate Stability Zone),大約厚 300 至 500 公尺,且位於約 190 公尺至 450 公尺的中深度範圍海域[參考文獻 5]。在這些沉積物的孔隙中,有許多以溶解狀態存在的甲烷。那麼,問題又來了,這些深海礦床是怎麼產生甲烷的呢?答案就是——細菌!

-----廣告,請繼續往下閱讀-----

在深海中存在著 2 種細菌:好氧細菌和厭氧細菌。從他們各自的名字來看,很明顯可以知道好氧細菌會進行有氧呼吸,也就是它們會以氧的化學反應來獲得能量。反之,厭氧細菌不用以有氧呼吸來生存,意即它們可以生存在沒有氧的環境中。

在深海礦床中,沉積物孔隙中的水在幾公分的深度便是缺氧狀態的,且由於這個區域的水域包含了沉澱率高、有機碳含量豐富、環境酸鹼值適中等條件,厭氧細菌便會開始作用在這些沉積物的有機碳物質上,並產生甲烷。 

事實上,大陸地區也可以生成可燃冰,但是蘊含量極少,大約只有 1% 的可燃冰儲存在陸域[參考文獻 9]。其原因或許和組成陸地的砂石成分有關,因為科學家採樣之後的結果顯示,這些生成於陸域的甲烷水合物僅會存在於深度 800 公尺以下的砂岩或粉沙岩岩床中。同時,存在於砂石縫隙中的化合物,會被熱力或微生物分解;然而,重量較重的烴類——也就是組成天然氣的原料,卻會在較輕的化合物被分解完之後,才有機會被分解[參考文獻5]。可以看出大陸生成甲烷水合物的條件極為苛刻,因此,以這種方式形成的可燃冰,目前只存在於西伯利亞和阿拉斯加的永凍土中。

三、能源議題的救世主?

可燃冰在近幾十年突然出現在人們的面前,一躍成為炙手可熱的能源議題新寵兒。事實上,人類早在 1810 年就已經於實驗室中發現天然氣水合物這種物質,只不過受限於當時的時空背景以及科學發展進程,1934 年才在美國的輸氣管道中,發現天然的甲烷水合物這種「可以燃燒的冰塊」。直到 1968 年,蘇聯科學家才終於在西伯利亞發現了天然氣水合物礦藏[參考文獻 6],而在此期間,人們普遍認為天然氣水合物大多只會出現在太陽系外圍的低溫區[參考文獻5]

-----廣告,請繼續往下閱讀-----

那麼,這種神祕的、甚至連科學家都還沒完全搞清楚生成機制的化合物,究竟是怎麼在這場能源大賽中「殺出重圍」的呢?這和可燃冰的轉化率、蘊藏量、能源危機,甚至人類環保意識的提升都有不可或缺的關係,可謂是天時地利人和的結果。

然而,目前可燃冰離完全商用仍有很長的一段路要走。先不提這個,我們來談談轉化率,顧名思義就是「可燃冰轉換成天然氣的效率」。前面有提到,當可燃冰轉化後,即可產生大量天然氣,而若我們精確地看數字,就可以發現 1 立方公尺的可燃冰分解後,可釋放出大約 164 立方公尺的天然氣[參考文獻 6]

這個轉化率著實驚人,因為若拿同等體積的天然氣和可燃冰相比,可燃冰能產出的能量是天然氣的 150 至 180 倍!所以,若可燃冰能順利轉為商用,無疑能使「運輸天然氣加蓋地下管線」、「天然氣存量減少以致價格上漲」等問題迎刃而解。 

不過,某種能源能是否能順利轉為商用,還有一個重要的條件——蘊藏量。目前,人類就正在面臨石化燃料存量枯竭的問題,然而人們的生活早已和石化燃料密不可分,小至織品原料,大至交通工具,或許都會面臨一場重大的革新,而這些無疑會造成經濟動盪,故這是十分棘手且嚴峻的狀況。

那麼,可燃冰的蘊藏量究竟能供人類使用多久呢?根據美國的天然氣需求量來看,僅開發美國本土外海的天然氣水合物,就足以供美國人使用 2000 年[參考文獻 9]!而台灣在西南海域發現的存量,可以供台灣使用約 40 年[參考文獻 10]!科學家也預估,可燃冰的天然存量大約是天然氣的 2 至 10 倍[參考文獻 5]

-----廣告,請繼續往下閱讀-----

由於可燃冰驚人的轉化率、龐大的蘊藏量,再加上燃燒後不會產生殘渣等特性,造成的汙染相較於現今正在使用的各種燃料來說減少許多。在人類盡力追求經濟產能與環保平衡的今天,無疑是救世主一般的存在。

四、如何開採可燃冰

可燃冰看似是目前能源議題的最佳解,但我們對它的瞭解仍遠遠不夠,因為我們還不知道如何快速、安全且大量開採。自 40 年前第一次發現礦藏至今,科學家不斷探索、採集並分析可燃冰這種新興燃料,即使瞭解仍十分有限,但也已經發展出一些鑑別以及開採的方法。除了以前傳統、直觀(但是相對來說更低效且粗魯)的加熱法及減壓法以外,甚至有了更新型的開採方法。不過,在介紹新型方法前,我們可以先從較傳統的方法開始,以便更加瞭解開採可燃冰最基本的模型與原理。由於此種方法較為直觀,篇幅會較為簡短。

以下分別介紹 3 種傳統與新型開採方法:

(一)、傳統——加熱法與減壓法

加熱法,顧名思義就是將可燃冰層以對流法、電磁加熱法[參考文獻 6]等直接升溫,將可燃冰分解為天然氣與水,並且直接以管線收集天然氣。減壓法則是以管線導出可燃冰層下方的氣體或流體,使可燃冰層的壓力變小。此時,可燃冰中的「冰」就會因為壓力下降而液化成為水,使得天然氣被釋放。

-----廣告,請繼續往下閱讀-----

(二)、新型——二氧化碳置換開採法

這個方法可說是傳統加熱法的進化型態,兩者都是以同樣的原理運作,即:使可燃冰升溫,讓水合物中的天然氣釋放出來,並加以收集。那麼,二氧化碳置換法為什麼是進階版的加熱法呢?原因就在於這種方法能在開採可燃冰的同時,將一部份的二氧化碳轉為水合物,封存在海底。以環保的角度來說,簡直可以稱得上是高收益。

此方法的核心概念是利用天然氣水合物和二氧化碳水合物保持穩定時的壓力差進行開採,意思就是,當我們把壓力控制在特定範圍下,天然氣水合物就會分解,而適合這個壓力的二氧化碳水合物就會形成[參考文獻 6]。圖六是二氧化碳置換法的示意圖,圖六(A)是開發前蘊藏可燃冰礦藏的海床。開採時,如圖六(B)所示,我們需要在可燃冰礦層的上方及下方都注入二氧化碳,下方那一層是主要運作的區域,而上方則用以阻隔並穩定海床。

接著,因為壓力被控制在適合二氧化碳水合物生成的範圍,因此當這種水合物逐漸生成並放熱時,最靠近底層的可燃冰就會被這些熱量分解,轉化出大量甲烷。此時如圖六(C),這些甲烷會被導管收集,所以下方的二氧化碳就會上移、填補空缺,然後持續生成二氧化碳水合物,使更多的可燃冰分解、釋放甲烷。在這種連鎖反應下,我們就可以達到在不斷釋放可燃冰中甲烷的同時,不斷(以水合物的形式)封存注入至海床中的二氧化碳[參考文獻 11]

圖六:以二氧化碳封存置換甲烷氣示意圖。圖/參考文獻 11

(三)、新型——固體開採法

最初的固體開採法是直接採集可燃冰固體,並將可燃冰固體移至淺水海域後加以分解,因為若是以物理或化學方法就地分解,會產生消耗能源,而且經費昂貴。之後,固體開採法也衍生出了另一種更進階的方式,稱為「混合開採法」。這種方法是將可燃冰就地轉為固體、液體混合的狀態,再將包含了可燃冰固體、液體及氣體的「泥漿」以導管傳輸至海平面上作業,藉此取得天然氣[參考文獻 6]。這種不用再將礦產運送至淺水區的方式顯然更加方便操作,且以導管運輸的方式能進一步減少可燃冰的損耗。

-----廣告,請繼續往下閱讀-----

五、台灣的可燃冰及各式能源之比較

相對於其他科技、科學競賽來說,台灣在可燃冰的發展上,雖然起步較晚,仍然有相當亮眼的成績。2018 年,科技部的第二期能源國家型科技計畫(NEP-II)就在臺灣西南外海採集到天然氣水合物。而誠如主導計畫的中央大學地科系許樹坤教授所說:「台灣因沒有自主能源,更顯珍貴。」教授說:「台灣是一個能源缺乏的島嶼,99% 的能源都仰賴進口。科學的新發現,若能配合工程技術開發,就能帶來新契機。台灣西南海域蘊藏豐富,預估可用上 40-50 年,目前日本和中國大陸都已試開採[參考文獻 17]。」若是台灣能成功開採並使用可燃冰,或許便能在這場白熱化的能源議題中,找到一線生機。

各式能源之比較表。資料來源/參考文獻 16

參考文獻

  1. Frozen Heat: Exploring the Potential of Natural Gas Hydrates.(2017, May).Office of Fossil Energy and Carbon Management.
  2. Sara E. Harrison. Natural Gas Hydrates. Physics 240, Stanford University, Fall 2010.
  3. Model of hydrogen bonds (1) between molecules of water. Wikipedia.
  4. Juwon Lee and John W. Kenney III. Clathrate Hydrates. IntechOpen.
  5. 甲烷水合物,維基百科。
  6. 可燃冰,百度百科。
  7. Kenneth C. Janda. Gas Hydrate Structure.
  8. 冰與火戰歌,經濟部石化產業高值化推動辦公室簡報。
  9. 解開可燃冰封印,科學人雜誌。
  10. 西南海域可燃冰若開採學者:可供台灣使用逾40年,國立中央大學。
  11. 以二氧化碳封存置換甲烷氣示意圖,中央地質調查所。
  12. 超流體,維基百科。
  13. 固液共存,百度百科。
  14. Coal – Types, Uses and Formation
  15. Table 8.2. Average Tested Heat Rates by Prime Mover and Energy Source, 2010 – 2020,SAS Output (eia.gov)
  16. 各式發電比較,國立交通大學。
  17. 重大突破!中大地科團隊首次在台灣海域鑽獲「可燃冰」,國立中央大學。
所有討論 4