0

0
0

文字

分享

0
0
0

質子半徑的量子問題

科學人_96
・2014/03/11 ・1814字 ・閱讀時間約 3 分鐘 ・SR值 557 ・八年級

-----廣告,請繼續往下閱讀-----

精確測量質子半徑的兩項實驗,得到了完全不一樣的數值,到底是量子電動力學仍不完備,還是我們忽略了什麼?

撰文/伯諾爾(Jan C. Bernauer)波爾(Randolf Pohl
翻譯/高涌泉

重點提要:

  • 一項測量質子半徑的新實驗發現,質子比預期來得小。
  • 這個情況意味著物理學家若不是不夠深入了解質子,就是還不夠澈底了解目前最精準的科學理論——量子電動力學。
  • 我們希望,這個較小的質子半徑數值能夠導致物理定律從根本進行修訂。

如果你一直以為科學家已經很了解質子,沒人能指責你錯得太離譜,因為質子畢竟是宇宙中物質最主要的成份、恆星熔爐的燃料。質子所帶的正電拉住了帶負電的電子而形成氫原子,在一個世紀前,對於這種現象的研究開啟了量子力學革命;現代物理學家則可以設法讓超高能量的質子對撞來產生像希格斯粒子這種奇異的東西。

但是對於質子的最新研究卻讓我們大吃一驚。我們兩人(伯諾爾與波爾)以及各自的實驗團隊,用了兩項互補的實驗,對於質子半徑做了至今最精確的測量。在實驗開始之初,我們以為所得到的結果只會讓已知質子大小的精確性提高一些而已,但是我們錯了。測得的質子半徑和已知半徑相差很大,這個差值是任一測量誤差量的五倍以上,意味著發生這種巧合的機率將小於10-6。

-----廣告,請繼續往下閱讀-----

因此一定有什麼地方不對勁,若不是我們還不夠充份理解質子,不然就是我們並不了解這些質子精密測量實驗所使用的物理原理。我們進入宇宙深處,卻看到了異常現象,因此有很大的機會可以得知一些新東西。

欠缺的移位

我們的故事起於義大利的聖塞扶羅島,數十位物理學家在這座島上會面,討論的主題是如何更嚴格地檢驗物理學中(甚至於可說是一切科學中)最精確的理論——量子電動力學(quantum electrodynamics, QED)。

sm145-32QED 的歷史可追溯至1928年,當時狄拉克(P.A.M. Dirac)結合了量子力學與狹義相對論而得到今天所謂的狄拉克方程式。這是電磁現象的最佳理論,因為它可以完整描述光與物質如何交互作用。一個例子是,QED 可以用物理定律與基本常數(譬如電子質量)來說明原子結構。也因為如此,物理學家便利用簡單的原子如氫原子來檢驗 QED。他們能夠從理論去預測實驗的結果,誤差不超過10-12,實驗誤差也差不多就是這麼大。

我們兩人在聖塞扶羅島首次碰面。那時我們為了增進對於 QED 的了解,都正著手測量質子。當時對於質子最精密的測量來自某種實驗技術,伯諾爾的實驗改進了這種實驗技術,已經開始要探究質子的內部結構。

-----廣告,請繼續往下閱讀-----

波爾的實驗團隊則用了全新的方法。他們研究的系統是一種奇異、沒有電子的氫原子型態,他們查驗了這個系統的能階細微移位,這個移位與質子大小密切相關。這種移位由已過世的藍姆(Willis E. Lamb)於1947年首次在正常的氫原子中測得。雖然物理學家仍然稱呼這種現象為「藍姆移位」(Lamb shift),但是他們已經了解它其實來自兩種不同的因素。

對於藍姆移位的第一項貢獻來自所謂的虛粒子,即在原子內部一下子蹦出來但又馬上消失的幽靈。科學家能夠用 QED 計算這些虛粒子如何影響原子能階,準確度極高。但是近年來,對於藍姆移位第二項貢獻的不準度已經開始限制科學家的預測能力。這第二項因素與質子半徑有關,也與電子奇特的量子性質有關。

在量子力學中,用來計算電子行為的是雲狀、散佈在原子內的波函數。波函數(更精確地講,是波函數絕對值的平方)描述了在某處找到電子的機率,而且它只有幾種特殊的形式,我們稱為原子態。

有些原子態(因為某些歷史原因它們稱為「S態」)的波函數在原子核的位置上有最大值,也就是說,我們在質子內部找到電子的機率不為零,而且這個機率會隨著質子半徑變大而增大。當電子跑到質子內部,電子所「感受」到的質子電荷(和電子位於質子之外相比)會比較小,因此質子與電子之間的整體束縛力會減低。

-----廣告,請繼續往下閱讀-----

由於束縛力降低,使得原子最低能量態(即1S態)的藍姆移位改變了0.02%。這個比例或許看起來微不足道,但是科學家已經把原子基態(1S態)與第一激發態(2S態)之間的能量差測得非常精確——誤差在數個10-15而已。因此如果我們想用精密實驗來查驗 QED 理論,當然必須把質子半徑造成的極小效應考慮進來。

過去八年,波爾的實驗團隊已經試著要把質子半徑精確量出來,但是在聖塞扶羅島第一次會議時,實驗似乎還無法上軌道,讓大家感到疑惑。

這時,伯諾爾的團隊正要開始澈底研究質子半徑;他的方法並不依賴氫原子能階的測量,反之,他們把電子射向氫原子,看它們如何散射開來,以推算出質子半徑。

SA原文:The Proton Radius Puzzle

-----廣告,請繼續往下閱讀-----

刊載於《科學人》2014年第145期3月號

文章難易度
科學人_96
39 篇文章 ・ 4 位粉絲
《科學人》雜誌-遠流出版公司於2002年3月發行Scientific American中文版,除了翻譯原有文章更致力於本土科學發展與關懷。

1

2
0

文字

分享

1
2
0
如果整個地球由質子構成,月球由電子構成,那會怎樣?——《如果這樣,會怎樣?2》
天下文化_96
・2023/04/26 ・2141字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

如果整個地球都由質子構成,而整個月球都由電子構成,那會怎樣?
——諾亞.威廉斯(Noah Williams)

質子地球,電子月球

這可能是我寫過最具破壞性的假設情境。

你可能會想像電子月球繞著質子地球運行,有點像是巨大的氫原子。某方面來說,這還有點道理;畢竟,電子繞著質子運行,而衛星繞著行星運行。事實上,原子的行星模型曾流行一時(不過,拿來解釋原子竟然不太管用)。

如果你把兩個電子放在一起,它們會想要分開。電子帶負電,而來自電荷的排斥力比將它們拉在一起的重力強了大約 20 個數量級。

如果你把 1052 個電子放在一起(構成月球),它們會劇烈的互相排斥,以致每個電子會被大到不可思議的能量推開。

-----廣告,請繼續往下閱讀-----

事實證明,對諾亞假設的「質子地球和電子月球」情境來說,行星模型更是大錯特錯。月球不會繞著地球運行,因為它們根本沒有機會影響彼此;使兩者各自分別炸開的力量,會遠大於兩者之間的任何吸引力。

如果暫時忽略廣義相對論(等一下會回來談),我們可以算出,來自這些電子相互排斥的能量,足以使它們向外加速到接近光速。將粒子加速到那樣的速率並不少見;桌上型粒子加速器(例如映像管螢幕)可以將電子加速到光速的相當比例。

但是,諾亞月球的電子所攜帶的能量,會遠遠大於普通加速器中的電子所攜帶的能量。它們的能量會超過普朗克能量的數量級,普朗克能量本身則是比最大的加速器中,所能達到的能量又大了很多數量級。換句話說,諾亞的問題遠遠超出普通物理學的程度,帶我們進入到量子重力與弦理論之類的高等理論領域。

所以我聯繫了尼爾斯.波耳研究所(Niels Bohr Institute)的弦理論科學家基勒博士(Dr. Cindy Keeler),請教她關於諾亞的假設情境。

-----廣告,請繼續往下閱讀-----

基勒博士同意,我們不應該信賴任何涉及「在每個電子中放這麼多能量」的計算,因為這遠遠超出加速器測試的能力範圍。「我不相信粒子能量超過普朗克尺度的任何事情,」她說。「我們實際觀測到的最大能量存在於宇宙射線中;我認為比大型強子對撞機大了差不多 106,但還是離普朗克能量很遠。身為弦理論科學家,我很想說會發生什麼關於弦理論的事情——但說老實話,我們也不知道。」

幸好,故事還沒結束。還記得我們先前決定忽略廣義相對論嗎?嗯,這是「帶入廣義相對論反而使問題更容易解決」的罕見情況之一。

在這種情境下,存在巨大的位能——使所有這些電子遠離彼此的能量。這樣的能量會扭曲空間和時間,和質量一樣。結果證明,電子月球中的能量大約等於整個可見宇宙的質量與能量總和。

相當於整個宇宙的質能集中在(相對較小的)月球的空間裡,會使時空強烈扭曲,甚至會比那 1052 個電子的排斥力還要強。

-----廣告,請繼續往下閱讀-----

基勒博士斷言:「沒錯,黑洞。」但這可不是普通的黑洞,而是帶有大量電荷的黑洞。為此,你需要一組不同的方程式——不是標準的史瓦西(Schwarzschild)方程式,而是萊斯納—諾德斯特洛姆(Reissner-Nordström)方程式。

萊斯納—諾德斯特洛姆方程式比較了向外的電荷作用力和向內的重力之間的平衡。如果來自電荷的向外推力夠大,黑洞周圍的事件視界可能會完全消失。那樣會留下密度無限大的物體,光可以從中逸出——這就是所謂的裸奇點(naked singularity)。

一旦有了裸奇點,物理學就會開始分崩離析。

量子力學和廣義相對論給出荒謬的答案,甚至是不同的荒謬答案。有人認為,物理定律根本不容許出現這種情況。正如基勒博士所言,「沒有人喜歡裸奇點。」

-----廣告,請繼續往下閱讀-----

以電子月球的例子來說,來自所有這些電子互相排斥的能量會非常大,以致重力會獲勝,而奇點會形成正常的黑洞。至少,某方面來說是「正常的」;它會是和可觀測宇宙一樣大的黑洞。這個黑洞會導致宇宙塌縮嗎?很難說。答案取決於暗能量是怎麼回事,沒有人知道暗能量是怎麼回事。

但就目前而言,至少附近的星系是安全的。由於黑洞的重力影響只能以光速向外擴展,因此我們周圍的大部分宇宙仍會天下太平,對我們荒謬的電子實驗毫不知情。

——本文摘自《如果這樣,會怎樣?2:千奇百怪的問題 嚴肅精確的回答》,2023 年 3 月,天下文化出版,未經同意請勿轉載。

所有討論 1
天下文化_96
132 篇文章 ・ 618 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

3
1

文字

分享

0
3
1
弗里曼‧戴森──自由隨性的異類科學家
科學大抖宅_96
・2020/05/18 ・6601字 ・閱讀時間約 13 分鐘 ・SR值 563 ・九年級

-----廣告,請繼續往下閱讀-----

2020 年 2 月 28 日,弗里曼‧約翰‧戴森(Freeman John Dyson)去世,享耆壽 96 歲,國際各大媒體紛紛撰文哀悼。

他是只有學士學位的普林斯頓高等研究院榮譽教授,一生獲獎無數;其最知名的科學成就是促成量子電動力學的完備。除此之外,戴森還涉足諸多不同領域,包括數論、生命科學、固態物理、天文物理等等;不少家喻戶曉的學者,例如科學頑童費曼[1]和氫彈之父泰勒[2],都曾與其並肩。

他撰寫科普書表達對人類未來、乃至移民宇宙的看法,對流行文化影響深遠,許多科幻作品都曾借用他的構想。戴森是原子科學家公報 (Bulletin of the Atomic Scientists)的理事會成員,協同管理末日時鐘[3](Doomsday Clock),而今年一月的調整,是有史以來最接近世界末日的一次──僅差距 100 秒。

戴森曾研發核彈,卻又提倡禁止核子試爆;他親眼見證科學如何讓人類擁有摧毀自己的能力,但也相信科學具有讓人類免於滅亡的潛力。豐富的生命經驗、對社會議題的關注,與天馬行空的想像力,都讓他不再只是單純的科學家,而是現代公共知識份子的象徵。

-----廣告,請繼續往下閱讀-----

戴森於 2005 年所攝相片(圖片來源

數學家的養成

弗里曼‧約翰‧戴森出生於 1923 年 12 月 15 日的英格蘭,自年幼就展現出卓越的數學天賦:五歲便嘗試計算太陽有多少原子、少年時期的休閒讀物是微分方程式教科書。1941 年,時值第二次世界大戰,戴森進入了著名的劍橋大學三一學院。

他回憶:「所有的應用數學家都去打仗了,基本上沒什麼物理好做。但是一些非常知名的純數學家還在──像是哈代[4]、李特伍德[5]──我可以獨占他們。作為學生,和這些鼎鼎大名的數學家為伍,是很美好的時光。」在數學大師的薰陶下,戴森養成了數學家的能力,這對他日後在物理上的成就有許多幫助。

之後,戴森參加了戰事,擔任英國皇家空軍分析師,並於戰後回到劍橋取得學士學位。1947 年,他前往美國康乃爾大學進行短期參訪,師從貝特[6]。貝特是極為優秀的物理學家,也具識人慧眼;沒幾年前,他才向康乃爾大學推薦自己在曼哈頓計畫的工作伙伴──才華洋溢的費曼擔任教職。

-----廣告,請繼續往下閱讀-----

費曼於 1965 年左右的照片(圖片來源

二戰後物理學的重要焦點:量子電動力學

第二次世界大戰才剛結束,物理研究百花齊放,實驗與想法不斷推陳出新。當時物理學界聚焦的問題之一,是如何發展量子電動力學──光與帶電粒子交互作用的理論,針對電子行為做出正確計算。

哈佛大學教授許溫格[7]率先拔得頭籌,提出新的計算架構,得出與實驗吻合的結果,轟動學界。同時,費曼也用他獨家(簡單但不被欣賞)的費曼圖方法,獲得跟許溫格幾乎一樣的答案。許溫格和費曼,兩者的方法截然不同,卻總能得到相同的結論──這究竟是怎麼一回事呢?在當時沒有人能夠明白。

粒子物理標準模型下,基本交互作用的費曼圖表示。圖/wiki commons

-----廣告,請繼續往下閱讀-----

另一方面,早在 1943 年,戰火肆虐的東方國度日本,東京文理科大學[8]教授朝永振一郎[9],便不為人知地獨立進行同樣的研究,並比許溫格更早踏出正確的一步,奠定新量子電動力學理論的根基;奈何時局動盪,他的成果到戰爭結束後才為西方所知──分屬不同陣營的兩方,終於可以安心進行學術交流與合作了。考量戰爭期間的時空環境,朝永的工作彷彿寒冬裡綻放的花朵,格外珍貴。

朝永振一郎(圖片來源

戴森的挑戰:解釋殊途同歸的正統方法與新把戲

與費曼同在康乃爾大學的戴森,是少數同時對許溫格和費曼理論有相當程度理解的人;他自述:「我用正統方法替貝特做的運算,花掉我幾個月的時間,寫了幾百頁的紙;費曼卻可以在黑板上,花半個小時而得到完全相同的答案……我暗自下定決心,做完貝特交代的工作後,接著就要來了解費曼的祕笈,並且用其他人都能懂的語言,將他的思想闡揚出來。」

1948 年暑假,戴森和費曼花上四天,從紐約州開車到新墨西哥州的阿布奎基,一路聊戰爭、聊核武、聊科學、批評彼此對科學的想法,真理卻愈辯愈明。在與費曼分別後,戴森參加了密西根大學的暑期學校,並抓緊機會與擔任課程講者的許溫格交流。每天下午,他都躲在屋簷下,仔細查驗許溫格演講的每一個步驟,再默想私下交流中,許溫格說的每一句話。到五個星期的暑期學校結束時,戴森已用許溫格的方法算過無數題目,寫滿上百頁計算。這時候的戴森還不知道,這個暑假即將成為他個人生命中,非常獨特的一段時期,大大影響了他的命運。

-----廣告,請繼續往下閱讀-----

許溫格,攝於1965年(圖片來源

兩邊兜在一起,完備量子電動力學

1948 年 9 月,戴森結束度假,搭上灰狗巴士返回美國東部。已經好一陣子沒想過物理的戴森,腦中卻突然浮現費曼的圖像和許溫格的方程式,「自行在我腦裡前後對正、左右標齊,而且從來沒有那麼清晰過。我生平第一次,可以將這兩個論點兜在一起。」他說。

過沒多久,戴森的論文發表了,名為〈朝永、許溫格和費曼的輻射理論〉[10]。原來,許溫格所用的複雜數學方法,和費曼所發明的費曼圖方法,存在一一對應的關係──兩者描述的是同一件事,只不過一方著重全面、精確的數學語言,另一方則給予我們更直觀的物理圖像;而戴森的論文,清楚闡述了二者之間的連結。朝永、許溫格和費曼,將量子電動力學帶入嶄新的階段,也因其貢獻,共同獲得 1965 年的諾貝爾物理學獎,戴森則對三人的獲獎扮演了關鍵角色。

在量子電動力學發展的關鍵時刻,戴森剛好站上一個特別的位置:既能和費曼長時間相處、討論其物理觀點,也有機會密集向許溫格求教,再加上戴森於劍橋養成的數學能力──這些因素的總和,讓戴森成為量子電動力學的獨特橋梁,連結起不同架構與敘事觀點,成就了量子電動力學的完備。

-----廣告,請繼續往下閱讀-----

朝永、許溫格和費曼三人分攤1965年諾貝爾物理學獎(圖片來源

沒有博士學位的大學教授

1951 年,儘管戴森只有大學學歷,以及幾年的研究生經驗,仍然被康乃爾大學聘為教授職,成為恩師貝特的同事──這也正好符合戴森一貫的信念:「我很自豪沒有博士學位。我認為博士學位系統很令人厭惡……它強迫一點都不適合做研究的人們,浪費多年的生命,某種程度上假裝自己在從事研究工作。最終,他們得到一張紙,載明他們合格了,但那並不代表任何事情。攻讀博士要花上太多時間,也阻擋了女性成為科學家──我認為這是莫大的悲劇。」

儘管原子彈才剛在六年前轟炸日本的廣島和長崎,造成絕大死傷,戰爭的殘酷卻並沒有停下部分科學家的腳步;當時,威力更強大的氫彈試爆和研發工作正如火如荼進行,貝特也參與其中,不但長時間不在康乃爾大學,也無心進行物理基礎研究。

另一方面,戴森之前還是個菜鳥、到普林斯頓高等研究院進行短期訪問的時候,曾利用專題研討會的時間,多次主講量子電動力學,向當時的院長歐本海默[11]推銷費曼和許溫格的成就,並成功說服了打從心底不接受的歐本海默,讓歐本海默刮目相看──這幫助戴森得到普林斯頓高等研究院的終身職工作。高等研究院的工作自是相當誘人,再考慮到貝特的狀況,戴森最終下定決心,於 1953 年離開康乃爾大學,前往普林斯頓高等研究院任職。這一待,就是六十多年,直到他生命的最後。

-----廣告,請繼續往下閱讀-----

普林斯頓高等研究院(圖片來源

小型核子反應爐的研發

1955 年,聯合國在瑞士日內瓦召開第一屆國際原子能和平用途會議,共有 73 個國家出席;從事核反應爐研究的各國科學家齊聚一堂,交流工作心得,一堆機密文件也都公開展示。會議的進行,標誌了國際合作時代的來臨。一時之間,核能成為造福全人類的尖端科技,發展前景可期。

就在這樣的氛圍下,隔年,應通用動力公司的邀請,戴森和氫彈之父泰勒一起主導了核反應爐的研發;他們專注於安全性,致力打造就連高中生都能操作的小型核反應爐──並且成功了。這部被命名為 TRIGA 的核反應爐是最成功的核反應爐之一,根據設計絕不可能發生爐心熔毀等重大核災事故。至今,TRIGA 反應爐仍作為教育、研究和醫療用途,在世界各地使用中。

儘管曾參與核反應爐的研發,也支持和平使用原子能,戴森對核能發電工業卻有諸多批評。他認為,既有的核能技術並不夠好,隨著石化能源用罄,人類將需要更便宜、更安全的核能反應爐,但是新核反應爐的研究卻越來越少,沒有嘗試就不會有進步。

-----廣告,請繼續往下閱讀-----

「冒險家、實驗家、發明家一個個被逐出大企業,而讓會計師、經理人獨擅勝場。」、「核能發展出了岔錯。」他說。

在戴森眼中,核能工業之所以陷入窘境,完全不如 1950 年代的蓬勃,一方面是因為「許多舊有的勢力都涉嫌重大,他們共謀讓核能發展變得麻煩而昂貴,遠超過我們先前的預估。」更重要的,則是因為人們不再有耐心去做試驗,也沒有預算去容納這項高風險的投資了──他在車諾比核災之前就做出了上述評論;現在的狀況,比起戴森那時候,是更好,還是更壞呢?

TRIGA 反應爐核心(圖片來源

殘念的獵戶座計畫,與不容忽視的核子試爆威脅

從 1958 到 59 年,戴森參與民間發起的獵戶座計畫(Project Orion),打算利用原子彈作為太空船的推進動力;他們喊出口號:「1970 土星見!」預計 1970 年就載人上土星的衛星。然而,世界局勢快速轉變,關於核彈試爆存續的討論不絕於耳,戴森出於對獵戶座計畫的熱情,不僅投書表達支持試爆,也嘗試設計新型核彈,希望大幅減少獵戶座計畫產生的放射性落塵,以延長計畫壽命。當時的戴森,一心只想探索浩瀚的宇宙,對於核彈設計抱持純然和平的動機。

只不過,當他的同事發明中子彈之後,自覺負有部分責任的戴森,無法再對核彈的和平用途充滿信心了──戰爭與和平,無法簡單一刀兩斷,不可能有純粹和平使用的核彈。

隨著時間推移,美、蘇兩國的核子試爆越演越烈,在全球累積的輻射塵也到了不能忽視的地步;於「軍備控制與裁軍署」(Arms Control and Disarmament Agency)兼差的戴森十分驚訝地在統計數據上發現,核子試爆總數每年呈指數增加,按照這個趨勢繼續下去,只怕會走上人類的不歸路。頭一次,他打從心底認為:核子試爆,非禁不可!

1963年,身為軍備控制與裁軍署專家的戴森,不但是甘迺迪總統簽訂《部分禁止核試驗條約》(Partial Test Ban Treaty,PTBT)的顧問,也以美國科學家聯合會代表的身份,在參議院聽證會上幫該條約背書護航。最後,《部分禁止核試驗條約》於同年 10 月 10 日生效,由美國、蘇聯、英國共同簽署,明訂禁止在大氣層、太空和水下進行核武器試驗──儘管那並無法阻止冷戰時期美、蘇兩國的軍備競賽,但也是很大的進步。

戴森一度對原子能充滿期待,深信它將帶給人類更光明的未來;但隨著世界局勢的轉變,原子能的發展完全不如想像那般美好,他也不再純然相信原子能的和平使用,甚至給自己曾熱切參與的獵戶座計畫簽下死亡證書。

《部分禁止核試驗條約》簽署後,大氣中的放射性同位素碳14濃度明顯下降。藍色線條為碳14的自然背景平均濃度。(圖片來源

涉獵眾多領域,對社會的莫大影響力

戴森興趣廣泛、涉獵過眾多不同領域;他就像充滿好奇心的小孩,找尋自己能夠解決的有趣問題,不介意它們重要與否。戴森寫過許多科普書,探討科學、技術、宗教與哲學問題,也提出過許多完全符合科學原理的天外奇想。他想像在小行星或彗星上種植基改樹木(人稱「戴森樹」,Dyson Tree),創造完整的生態系,以作為人類未來的居所。他也將既有科幻小說[12]中的情節發揚光大:發達的智慧文明可以建造環繞於恆星周圍、適居的人造生物圈(artificial biosphere),充分利用恆星的能源。

儘管跟戴森本來的想像略有不同,之後的科幻小說家開始幻想,將整個恆星完整包覆、吸取所有能源的巨型結構──稱為「戴森球」(Dyson Sphere)。雖然戴森本人並不喜歡這個名字,但戴森球已廣泛出現在許多科幻作品中,包括知名影集《銀河飛龍》(Star Trek: The Next Generation)。

《銀河飛龍》影集裡,企業號繞行戴森球的畫面(圖片來源

作為受人敬重的科學家,和對流行文化有莫大影響的意見領袖,戴森在氣候變遷議題卻是出了名的懷疑論者。他認為現有氣候模型過於簡略、無法描述真實世界;全球暖化帶來的效應也不見得全然負面,其嚴重性被政治性地過分誇大──但這並不表示他忽視氣候科學家提出的證據。對戴森來說,跳脫既有框架、保持懷疑的態度是重要的,只要現有證據無法百分之百說服他,他會毫不猶豫地站出來挑戰(儘管戴森的說法後來也遭到其他科學家的反駁)。

知名諾貝爾物理學獎得主溫伯格[13]這麼形容戴森:「當共識如同湖面結冰那般逐漸成形,戴森就會盡力去敲碎那冰塊。」不管是在科學、還是社會議題上,戴森向來強調多元的重要性──這使他往往刻意站在大眾的對立面。

率直的思想家

戴森一生絕大部分時間都在普林斯頓高等研究院度過;即使退休,他仍擁有自己的辦公室,並常漫步於院區──直到生命結尾。

戴森不追求發表自己的獨創性科學理論,滿足於和其他人共同工作、討論他們的構想。他穩重、內斂、聰明,並且謙遜,因此得到許多同僚的敬重。他對科學的可能性懷抱著無比信心,積極思考人類的長遠未來;他深知戰爭的殘酷,核武帶來的議題遠比製造核武的科學來得更複雜,核武的研究也不可能和戰爭撇清關係。

戴森去世當天,於普林斯頓高等研究院發布的新聞稿裡,院長戴克赫拉夫(Robbert Dijkgraaf)這麼形容戴森:

近代粒子物理的建築師、無拘無束的數學家、太空旅行、天體生物學和裁減軍備的倡導者、未來學家、永遠的研究生、(包括他自己的)先入為主觀點的反對者、富有思想的評論家、全時對世間事保持睿智的觀察者。他的秘密就是直率地接受生命中的所有事,直到最後一刻。

他豐富的生命經驗、廣泛的涉獵領域、不隨波逐流的堅持,都讓他成為世人眼中的戴森──自由又隨性的異類科學家。

2007年戴森在他普林斯頓的辦公室(圖片來源

註釋

  • [1] 理察‧菲利普斯‧費曼(Richard Philips Feynman,1918 年 5 月 11 日-1988 年 2 月 15 日),美國理論物理學家,因對量子電動力學的貢獻,於 1965 年獲得諾貝爾物理學獎。
  • [2] 愛德華‧泰勒(Edward Teller,1908 年 1 月 15 日-2003 年 9 月 9 日),匈牙利猶太裔美國理論物理學家,以研發氫彈聞名。
  • [3] 由芝加哥大學的《原子科學家公報》雜誌於 1947 年設立,每年一月進行評估,標示出世界距離毀滅有多近;午夜零時象徵世界末日來臨。
  • [4] 戈弗雷‧哈羅德‧哈代(Godfrey Harold Hardy,1877 年 2 月 7 日-1947 年 12 月 1 日),英國數學家,二十世紀英國分析學派的代表人物。
  • [5] 約翰‧恩瑟‧李特伍德(John Edensor Littlewood,1885 年 6 月 9 日-1977 年 9 月 6 日),英國數學家,長期和哈代合作。
  • [6] 漢斯‧阿爾布雷希特‧貝特(Hans Albrecht Bethe,1906 年 7 月 2 日-2005 年 3 月 6 日),德國和美國猶太裔核物理學家,1967年諾貝爾物理學獎得主。
  • [7] 朱利安‧西摩‧許溫格(Julian Seymour Schwinger,1918 年 2 月 18 日-1994 年 7 月 16 日),猶太裔美國理論物理學家,因對量子電動力學的貢獻,於 1965 年獲得諾貝爾物理學獎。
  • [8] 現在的筑波大學。
  • [9] 朝永振一郎(Shinichiro Tomonaga,亦做Sin-Itiro Tomonaga,1906 年 3 月 31 日-1979 年 7 月 8 日),日本物理學家,因對量子電動力學的貢獻,於1965年獲得諾貝爾物理學獎。
  • [10] 原名“The Radiation Theories of Tomonaga, Schwinger, and Feynman”,發表於《物理評論》(Physical Review)。
  • [11] 朱利葉斯‧羅伯特‧歐本海默(Julius Robert Oppenheimer,1904 年 4 月 22 日-1967 年 2 月 18 日),美國理論物理學家,人稱「原子彈之父」。
  • [12] 出自史泰普頓(Olaf Stapledon)於 1937 年出版的《造星者》(Star Maker)。
  • [13] 史蒂芬‧溫伯格(Steven Weinberg,1933 年 5 月 3 日-),美國物理學家,1979 年諾貝爾物理學獎得主。

參考資料

  1. The Economist (2020/03/14), “Freeman Dyson died on February 28th”, The Economist.
  2. Andrea Stone (2020/02/28), “Freeman Dyson, legendary theoretical physicist, dies at 96”, National Geographic.
  3. Freeman J. Dyson, “The radiation theories of Tomonaga, Schwinger, and Feynman”, Physical Review. 75 (3): 486 (1949).
  4. +plus magazine (2013/07/22), “Operas, revolutions and nature’s tricks: a conversation with Freeman Dyson”.
  5. Dwight E Neuenschwander (2016), “Dear Professor Dyson: Twenty Years Of Correspondence Between Freeman Dyson And Undergraduate Students On Science, Technology, Society And Life”, Wspc.
  6. 高崇文(2018/02/11),〈孤高的物理學家:許文格(二)邁向巔峰〉,物理雙月刊。
  7. Steve Connor (2011/02/25), “Letters to a heretic: An email conversation with climate change sceptic Professor Freeman Dyson”, Independent.
  8. Thomas Lin (2014/03/26), “A ‘Rebel’ Without a Ph.D.”, Quanta magazine.
  9. Robbert Dijkgraaf (2020/04/13), “Remembering the Unstoppable Freeman Dyson”, Quanta Magazine.
  10. 戴森(2016),《宇宙波瀾:科技與人類前途的自省》,邱顯正譯,天下文化。
科學大抖宅_96
36 篇文章 ・ 1729 位粉絲
在此先聲明,這是本名。小時動漫宅,長大科學宅,故稱大抖宅。物理系博士後研究員,大學兼任助理教授。人文社會議題鍵盤鄉民。人生格言:「我要成為阿宅王!」科普工作相關邀約請至 https://otakuphysics.blogspot.com/

0

1
0

文字

分享

0
1
0
夸克是構成物質的基本單位,那麼強子呢?它們的關係是什麼?——《科幻小說不是亂掰的:白日夢世界中的真實科學》下
時報出版_96
・2019/06/11 ・2659字 ・閱讀時間約 5 分鐘 ・SR值 579 ・九年級

-----廣告,請繼續往下閱讀-----

反物質是怎麼一回事?

反物質是一種物質,只是不同的物質而已。

它之所以不同是因為它是由奇特的粒子所組成,這種粒子有著和一般物質相反的電荷。換句話說,在反物質裡的原子有帶正電的電子,稱為陽電子或正電子,盤旋在一個由帶負電的質子,又稱為反質子,所組成的原子核上方的活躍雲團。當一個粒子接觸自己的反相同那面時,它們會互相殲滅對方。那股能量必須要有出處,在科幻小說裡,這股能量能當作機器或武器的能量使用。

光劍!圖/pixabay

理論上來說,在我們的宇宙裡的每一個物質,應該要有一樣數量的反物質。並且它們應該已經將對方清除,但並沒有,所以我們才會在這兒。因為某些原因,在我們的宇宙的附近,物質在原始年代(primordial era〉會逐漸將反物質排擠出去。這在宇宙的其他地區並不必然是真的。在那兒的某處有可能是反物質銀河,這可以是科幻小說作家考慮用的素材。如果來一個一艘太空船正穿過一道只能用看的卻無法接觸的反物質銀河這樣的題材,如何?

諾貝爾獎得主的物理學家保羅.狄拉克(Paul Dirac〉於一九二八年導出一個發現反物質的方程式。這並非他的本意,完全是個偶然事件,這也是許多新發現的動機。一切都是從他有一個非常詭異的想法開始的,那就是自然法則應該適用於一切所有的事物。自己去想想吧! 在那個時候量子力學是以薛丁格的破壞相對論做出公式化的表達,而相對論完全忽視量子力學。

-----廣告,請繼續往下閱讀-----

狄拉克的公式成功地將這兩者一致化,當他呈現一個電子以接近光速的速度行進時會產生什麼。好笑的是這個公式也有一個一致的解決方式,就是陽電子。卡爾.戴維.安德森(Carl D. Anderson〉於一九三二年發現陽電子,也就是反物質的第一個直接證據。

正子電腦斷層掃描。圖/pixabay

他因為這項發現於一九三六年獲頒諾貝爾獎。現在陽電子已經使用於正子電腦斷層掃描上。

好吧! 來點比較平易近人的話題吧! 雖然現在還處於針對癌症治療的概念階段,使用反物質而非放射療法(對腫瘤放射 X 光或質子〉可能對病人來說會安全的多。反質子可以使用於殲滅腫瘤原子的核心裡的質子。加上釋放出的能量可以對腫瘤細胞做出更大的破壞。

-----廣告,請繼續往下閱讀-----

所謂

質子和中子都是由夸克所組成的。夸克的形式物理學家稱做「有不同的口味」:上夸克、下夸克、迷人的夸克、奇怪的夸克、頂尖的夸克、墊底的夸克。

為了讓這篇文章(幾乎是啦!〉保持簡單,我會將討論範圍縮小至上夸克與下夸克,因為它們是最穩定的。你要做好心理準備,因為我在這裡會變得比較數學性喔! 但都只是些加法演算而已啦!

來複習一下,一個質子帶有一正電荷,一個電子帶有一負電荷,與一個不帶電的中子。現在奇怪的來了:上夸克帶有三分之二正電荷及下夸克帶有三分之一負電荷。是的,這些都是部分少量的。我知道,這很誇張! 對非物理學家的人來說,這根本不用擔心,因為歸因於強核子力,它們在大自然裡絕對不會被單獨發現。

夸克是如何在一個原子的核心裡為粒子充電:

-----廣告,請繼續往下閱讀-----

一個質子是由兩個上夸克及一個下夸克所組成。

現在用數學來表現:

+ 2/3(上夸克〉+ 2/3(上夸克〉- 1/3(下夸克〉= 1,一個正電荷。

一個中子是由一個上夸克及兩個下夸克所組成。

+ 2/3(上夸克〉- 1/3(下夸克〉- 1/3(下夸克〉= 0,一個電中性。

為了讓這點更複雜,沒有兩個夸克的結合可以讓你得到負一、零或一。好吧! 是幾乎沒有任何結合。要讓一個兩個夸克的結合可以成立,你需要所謂的反夸克(帶有負三分之二與正三分之一電荷〉。

在接下來的這兩個段落是針對完整性,所以下次某人試著要用核子物理學來讓你對他有好感時,你可以點頭示意表示了解。

-----廣告,請繼續往下閱讀-----

強子和克的關係

任何由強核力結合而成的事物稱為強子。任何由三個夸克組成的強子稱為重子(像是質子和中子〉。從另一角度來看,介子是由兩個夸克所組成的強子。

電子是基本的粒子,意味著它們無法再做分割。它們來自和夸克無關的另一個稱為輕子的家族。不像強子,輕子不會和強核力互動。它們的選擇仲裁者是電磁力。電子是最輕的帶電輕子。這對我們的存在是非常棒的,因為只有最輕的帶電輕子是最穩定的。因為這種穩定性才會產生化學。

化學萬歲!大家來中場休息,吸個貓~圖/pixabay

來個小結論吧!

四種宇宙原力的影響範圍

在影響的範圍與強度來說,這四種力量有很大的分別。其中最強的力量(真是驚喜!〉是強核力。提供一個參考方式,想像強核力的強度是被定義為相等的一種力量。第二強的力量是電磁力,但只有強核力的一百三十七分之一的強度。接著是弱核力,令人震驚的是它只有強核力的 0.0000001 強度。最後來到這四個裡面最弱的力量,就是重力,它只有強核力的 0.00000000000000000000000000000000000001 的強度。

-----廣告,請繼續往下閱讀-----

是的,重力是相對地微不足道。我們的整個星球都在把你往下拉,但只要一個廚房用吸鐵貼就能夠讓一個迴紋針從地面上彈跳起來。而且你一定有注意到一丁點的靜電是如何讓一張紙可以貼在你的手上並壓倒性地征服整個星球的重力作用。

重力與電磁力兩者皆有一種無限範圍的影響力,而強核力與弱核力的範圍則較小。強核力的影響力不超過一個原子核的寬度(0.000000000000001 公尺,或一費米〉。弱核力則侷限於一個質子直徑的一個百分比的十分之一。

核融合 vs. 核分裂

核分裂是當重的原子核以分裂的方式釋放能量。核融合是從結合原子核及提升元素週期表到較重的原子。舉例來說,在早期的宇宙,氫原子融合以形成氦原子。當兩個原子融合時,新原子的大部分會比兩個原來的原子總和來的少。消失的大部分透過 E=mc2 公式變成能量。

E=mc2。圖/pixabay

-----廣告,請繼續往下閱讀-----

身為一種力量來源,核融合的優點是沒有像核分裂一樣會有長久的放射性的廢料產生。

——本文摘自《科幻小說不是亂掰的》,2019 年 3 月,時報出版

時報出版_96
174 篇文章 ・ 34 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。