0

0
0

文字

分享

0
0
0

利用雷射冷卻技術來冷卻硬幣般大小的物體

科景_96
・2011/02/10 ・416字 ・閱讀時間少於 1 分鐘 ・SR值 553 ・八年級

-----廣告,請繼續往下閱讀-----

Original publish date:May 04, 2007

編輯 John C. H. Chen 報導

科學家可以利用雷射冷卻技術來冷卻硬幣般大小的物體,達到0.8K。

雷射冷卻技術基本上都是用來冷卻原子氣體,讓少量的原子(~10^8個)達到絕對溫度10^-6度左右。但是LIGO Laboratory的科學家利用雷射冷卻的技術來冷卻一個硬幣般大小,重約一克(約10^20個原子)的鏡子,使鏡子的溫度達到0.8K。

-----廣告,請繼續往下閱讀-----

值得注意的是這個冷卻技術只有在沿著雷射光方向成立,也就是說這是一維的冷卻技術。鏡子可以在另外兩個維度自由移動。所以就算是用手去觸摸這面鏡子,我們基本上並不會覺得這面鏡子特別冰冷。

利用雷射冷卻原子一維的運動達到0.8K,某種程度上類似把原子用雷射光牢牢押住,或者是類似把原子僅僅的貼在一跟監硬而不移動的棒子上。如果用第二種假設,那麼這根棒子的硬度大概比已知最硬的鑽石還要大上20%。

由於LIGO的主要任務是測量訊號極其微弱的重力波,這種方式可以有效降低系統雜訊,相信可以大幅提高偵測系統的靈敏度。

原始論文
An All-Optical Trap for a Gram-Scale Mirror
Phys. Rev. Lett. 98, 150802 (2007)

-----廣告,請繼續往下閱讀-----

參考來源:

文章難易度
科景_96
426 篇文章 ・ 7 位粉絲
Sciscape成立於1999年4月,為一非營利的專業科學新聞網站。

0

0
0

文字

分享

0
0
0
低溫學的奧秘──《知識大圖解》
知識大圖解_96
・2015/12/31 ・3171字 ・閱讀時間約 6 分鐘 ・SR值 547 ・八年級

-----廣告,請繼續往下閱讀-----

8225107204_789a301eb8_z
Photo credit: ChefSteps @Flickr

在極低的溫度下,物質會開始出現奇特而神祕的性質。

低溫學是研究極低溫度的一門科學。這個領域的研究目標是了解如何產生與維持絕對溫度123度或是攝氏-150度以下的低溫,同時研究在這種低溫環境下,各種物理、化學及生物作用會產生什麼變化。

分子的隨機運動會產生熱,而溫度只要下降,分子運動就會開始變慢。但根據熱力學定律,這種情況並不會永遠持續下去,一旦到達某個極限,分子就會完全停止熱運動;這個極限被稱為絕對零度或0K(相當於攝氏-273.15度),也就是可能達到的最冷溫度。

當物質的溫度接近絕對零度時,其性質會大幅改變,例如氮氣與氧氣等永久氣體達到絕對溫度數十度時會變成液體,可作為太空船燃料,或用於快速冷卻食物以供保存,甚至能應用在外科手術,移除受損細胞;鈮合金(niobium alloy)降至接近絕對零度時,會完全失去電阻而成為超導體,能用來製造強大的電磁鐵,將次原子粒子(subatomic particle)加速到接近光速。而當溫度降至絕對溫度2.19度,甚至是更低時,液態氦會失去黏度而變成超流體(superfluid),超流體的特性非常神奇,能夠沿著玻璃燒杯往上流。

-----廣告,請繼續往下閱讀-----

讓我們一同探索低溫學的奧祕,深入瞭解這個正將科學極限推向另一個境界的學問。

用低溫電子學為歐洲核子研究組織保冷

通過導體的電流會受阻於物質的電阻,但是當某些金屬的溫度下降時,其電阻也會跟著降低。在某些情況下,導體處於超低溫時,其電阻會突然降至零,因而變成超導體。

歐洲核子研究組織(CERN)的大型強子對撞機(Large Hadron Collider,簡稱LHC)之中導引粒子束運行的主要電磁鐵被液態氦冷卻至絕對溫度1.9度(相當於攝氏-271.3度),這比在外太空還冷,因此電阻會完全消失,以防止能量轉為熱能逸失。

29
本圖節錄自《How It Works知識大圖解 國際中文版》第15期(2015年12月號),全見版請點擊本圖放大。

冰凍死人

低溫學vs人體冷凍技術

談到低溫學(cryogenics),許多人腦中浮現的第一個畫面是屍體被保存在冷凍櫃,期待有朝一日能復活。科幻片讓這種想法大為風行,而且美國已有專門機構負責進行這種服務,但冷凍屍體的技術目前仍非常缺乏科學根據。

-----廣告,請繼續往下閱讀-----

科學家很謹慎地將低溫學與冷凍屍體的過程──也就是所謂的人體冷凍技術(cryonics)──加以區隔;在準備接受人體冷凍技術的病人死亡後,他的血液將被一些化學混合液取代,目的是在冷凍過程中保護脆弱的細胞。

完成以上的程序後,會用液態氮冷凍人體,並將人體放入儲存槽內。負責進行人體冷凍的公司不須經過科學或醫學認證,冷凍過程中的某些工作甚至可能由志工進行。

冰凍人體確實是個令人振奮的構想,但目前還沒有證據顯示這種人體冷凍技術能夠奏效。

提供火箭燃料

低溫學的主要應用範圍之一是太空旅行;第一部使用低溫燃料推動的火箭是美國航太總署(NASA)的半人馬座火箭(Centaur)的末段引擎,於1963年成功發射。

-----廣告,請繼續往下閱讀-----

最常用的成對低溫燃料是液態氫(LH2),而液態氧(LO2 或LOX)則用來助燃。氫氣是很輕的氣體,在氧氣中能完全燃燒,將這兩種氣體冷卻至極低溫後,可將更多燃料擠入燃料槽。

燃料槽在太空飛行期間會曝露在不同的熱源之下,像是引擎廢氣、太空船摩擦大氣層產生的熱,還有來自太陽的熱。為了讓燃料保持液態,燃料槽不但要有良好的絕熱能力,同時也要能忍受內部液體燃料的極端低溫。

一般而言,這些燃料都裝載於重金屬槽,不過NASA與波音公司都致力於發展革命性的綜合材質燃料槽,將比標準低溫槽輕30%。未來這些燃料槽將能攜帶更多燃料,使太空船能飛到太空中更遠的地方。

讓金屬更堅韌

當金屬從液態冷卻成為固態時,會形成晶體結構,個別原子也會排列成有規律的晶格,但這種方式通常會產生缺陷。傳統上會用熱處理來補救,也就是讓金屬再變回液體,以減低壓力、填補空隙,但這種工序並不夠完全。只要運用低溫學,熱處理鋼無法補救的缺陷與應力都能被去除。

-----廣告,請繼續往下閱讀-----

熱處理之後,金屬被緩慢冷卻至接近絕對零度;這個工序允許結構內部的特定成分移動,以填補微觀缺陷,使結構更為均勻。這種方式能減低應力,產生更緊密、更具韌性的金屬。經過冷處理的金屬能用來製造高爾夫球桿與棒球棒;金屬的結構越緊密,振動越小,也就會傳遞越多能量給球。

30
本圖節錄自《How It Works知識大圖解 國際中文版》第15期(2015年12月號),全見版請點擊本圖放大。

治療運動傷害

並非所有低溫冷凍技術都已發展成熟,如同體育界最近才興起所謂的「全身性低溫療法」(whole-body cryotherapy)。過去是用冰敷或浸泡冷水來治療運動傷害,而這種新療法則是透過讓患者在低溫室裡冷卻全身,以減輕運動傷害、肌肉與關節疼痛或是關節炎等症狀;這種療法奠基於日本在1970年代的一項研究。和水相較之下,空氣的導熱能力較差,因此與傳統泡冷水的方法比起來,待在低溫室時,身體的核心溫度受到影響的機率較低。

患者在進入以氮氣冷卻的房間後,會曝露在低於攝氏-100度的環境下約三分鐘。患者的四肢有衣服、手套、襪子、面罩和內衣覆蓋,但其他部位的皮膚就會曝露在極低溫之下。此時身體的自然反應是切斷對皮膚的血液供應,並將血液導向核心部位,讓熱量的流失降至最低,並維持適當的體溫。這種療法的副作用是讓大腦釋出稱為腦內啡的天然止痛劑,使人忘卻疼痛、感到愉快。

治療關節炎

冷療(Cryotherapy)的研究是為了治療關節炎之類的病症。曝露在低溫下可減緩神經傳導,透過降低肌梭的反應,將有助於減低肌肉痙攣;這種現象在生活中能輕易驗證,只要試想當你從天寒地凍的戶外進入室內後,嘗試用凍僵的手指解開你的上衣鈕扣。

-----廣告,請繼續往下閱讀-----

寒冷的溫度也被認為能降低發炎關節裡具破壞性的酵素的活性,這種酵素叫做膠原酶,膠原酶會破壞骨頭上具保護功能的膠原蛋白軟骨。

針對許多關節功能失調病患的研究顯示,冷療能暫時降低患者的疼痛感,並維持大約90分鐘,讓病患有空檔在這段時間內進行物理療法或是其他介入療法,否則患者在治療過程中可能會感到非常不舒服。由此可知,即使冷療不具有長期療效,但是在與其他療法結合之後,仍然有顯著的醫療效益。

冷療手術

極低溫帶來的破壞作用已被應用於醫學治療;液態氮的極低溫度現今普遍用在消除疣或癌細胞等異常細胞。

這種療法的進行方式會根據不同狀況而有些微差異,可能會利用棉花棒、噴槍,或是名為冷凍探頭(cryoprobe)的中空管將液態氮直接噴灑於身體受感染的部位。

-----廣告,請繼續往下閱讀-----

冷療手術會迅速將受傷的組織冷凍,並消滅掉異常細胞。這種療法比藥物治療更為精確,可能傷及的周圍組織和疼痛感也會比外科手術更小。

32
本圖節錄自《How It Works知識大圖解 國際中文版》第15期(2015年12月號),全見版請點擊本圖放大。

超低溫保存法

在極低溫之下,生物程序會近乎停止;缺乏熱能導致酵素活性趨緩,活細胞幾乎能被無限期保存。

不過,活細胞的超低溫保存準備工作絕非易事。細胞的微觀結構相當脆弱,因此可能在低溫時被內部膨脹的水分脹破、變成碎片;當水形成冰後,溶解出的離子、鹽分和其他分子也會濃縮,擾亂細胞內原本的化學平衡。

低溫保護劑(cryoprotectant)這種化學物會被用來保護細胞,以避免上述的情況發生;其中的甘油、二甲基亞碸(dimethyl sulfoxide,簡稱DMSO)或糖會被用來取代水分,阻止冰晶形成,或改變其形狀與大小。接著會用液態氮迅速冷卻細胞,使其越過所謂的玻璃轉化溫度(glass transition temperature),之後水分就會凍結成一種像玻璃而不像冰的固體,然後這些細胞就能安全地貯存在低溫的液態氮蒸汽裡。

-----廣告,請繼續往下閱讀-----

 

本文節錄自《How It Works知識大圖解 國際中文版》第15期(2015年12月號)

更多精彩內容請上知識大圖解

知識大圖解_96
76 篇文章 ・ 11 位粉絲
How It Works擅長將複雜的知識轉化為活潑有趣的圖解知識,編輯方式以圖像化百科呈現,精簡易懂、精采動人、深入淺出的圖文編排,讓各年齡層的讀者們都能輕鬆閱讀。

0

0
1

文字

分享

0
0
1
NASA計畫打造宇宙中最冷的地方—低溫原子實驗室
臺北天文館_96
・2014/02/16 ・1518字 ・閱讀時間約 3 分鐘 ・SR值 548 ・八年級

-----廣告,請繼續往下閱讀-----

CAL-logo-fullsize

大家都知道太空中溫度很低。在恆星和星系彼此間的廣袤空間,氣體物質的溫度僅有絕對溫度3K,相當於攝氏零下270度左右。不過,美國航太總署(NASA)科學家現在想要在國際太空站(International Space Station,ISS)中打造一間實驗室,溫度將比3K還低。

NASA下所屬的噴射推進實驗室(JPL)低溫原子實驗室(Cold Atom Lab,CAL)計畫主持人Rob Thompson表示:這個計畫將研究遠低於自然界溫度的物質,目標是絕對溫度100塵度(pico-Kelvin,註:pico,塵,兆分之一)。目前這個原子冷凍庫預定將在2016年發射並裝置在ISS中。如果建置成功,這將是已知宇宙中最冷的地方。

100塵度相當於絕對零度(0K)之上約100億分之1度,在此溫度下,理論上所有原子的熱活動都會停止,一般常說的固態、液態、氣態也不再有意義,反倒使原子彼此間的交互作用創造了一種新的量子物質型態。

量子力學是物理學的分支之一,應用於原子尺度的光和物質。在量子領域中,物質可以幾乎同時出現在兩個地方,物體行為可以是粒子也可以是波動,沒有任何事物是確定無疑的,量子世界依靠的是機率。簡單來說,量子世界和你我熟知的世界大不相同,這也是為何Thompson等人要打造低溫原子實驗室的原因。他們要研究的目標,是所謂的「玻色–愛因斯坦凝聚(Bose-Einstein Condensates,BEC)」。

-----廣告,請繼續往下閱讀-----

1995年時,研究學者發現在銣原子氣體冷卻到接近絕對零度時,會凝聚成一種單一物質波;鈉原子氣體也有同樣的情形,由於當初在1920年代,玻色(atyendra Bose)和愛因斯坦(Albert Einstein)曾就此提出過預言,因此這個新發現被稱為玻色–愛因斯坦凝聚。2001年時,美國麻省理工學院(MIT)Wolfgang Ketterle、美國國家標準技術研究所(National Institute of Standards & Technology)Eric Cornell和科羅拉多大學(University of Colorado)Carl Wieman因為個別獨立發現這樣的現象而獲得諾貝爾物理獎。

有趣的是,如果製造出兩種BEC並將之放在一起,它們並不會像普通氣體一樣混和,反而會像波動一樣產生干涉現象,因而出現薄而平行的物質層,而層與層之間是則是空無一物的空間。在一個BEC中的原子,與另一個BEC中的原子相加後的結果,居然是….半個原子都沒有!低溫原子實驗室就在幫助科學家瞭解這些這些物體在可能是最低溫狀態的行為。

科學家可在低溫原子實驗室混合超低溫氣體,藉機觀察會發生何事。將不同種類的原子予以混合後,它們會幾乎毫無干擾的懸浮在一起,這讓科學家得以對它們之間極其微弱的交互作用進行更靈敏而精密的測量,或許可藉機發現有趣而新奇的量子現象。

在太空中繞地球公轉的國際太空站由於受到的地球重力不大,在此能將物質降溫到很冷的程度,遠比在地球表面可製造的最低溫還低得多。這是因為根據熱力學原理,當氣體膨脹時會冷卻;這種現象相當常見,例如當按壓噴霧罐讓氣體噴出時,便可感覺到噴霧罐的罐身變冷了。量子氣體冷卻的方式和噴霧罐幾乎相同,只不過是將噴霧罐換成所謂的「磁阱(magnetic trap)」。在國際太空站中,因重力微弱,原子不需要對抗重力的拉扯,使得磁阱也可弄得非常微弱,而微弱的磁阱則讓氣體膨脹而冷卻的程度比地面更甚,從而能製造一個超低溫環境。

-----廣告,請繼續往下閱讀-----

不過,低溫原子實驗室建置完成後,科學家們也不確定底會通過這個實驗室而發現什麼,即使湯普森列出了一堆諸如量子感應器(quantum sensors)、物質波干涉儀(matter wave interferometer)、原子雷射(atomic laser)等等可「實際應用」的清單,不過聽起來還是很像科幻小說的情節。所以,事實上,這個低溫原子實驗室將引領科學界進入一個未知的領域。

科學家們期望低溫原子實驗室能成為通往量子世界的敲門磚。如果溫度夠低,或許科學家們可研究聚集成約人髮寬度的原子波,以人眼可以觀察到這些物質波,如此一來,將量子世界提升至巨觀世界後,或許能更容易發現量子世界的秘密。

資料來源:The Coldest Spot in the Known Universe. NASA Science [January 30, 2014]

轉載自網路天文館

-----廣告,請繼續往下閱讀-----