0

0
0

文字

分享

0
0
0

尋找歐羅巴冰層下的真相

Whyjay
・2013/04/12 ・1879字 ・閱讀時間約 3 分鐘 ・SR值 512 ・六年級

-----廣告,請繼續往下閱讀-----

歐羅巴(Europa)在希臘神話中,是位美得令宙斯心動的姑娘;不知是不是巧合,在天體生物學家的眼中,木星的衛星「歐羅巴」或許也是最迷人的尤物。

歐羅巴佈滿「疤痕」的表面。

坦白說,我們對這顆衛星的所知並不多,迄今為止也只有伽利略號太空船對她做過較詳盡的近距離調查,但也是約十五年前的事了。沒想到的是,單單靠著這一點資訊,就足以窺見歐羅巴的迷人風采。對於現今自然科學愛好者來說,或許「歐羅巴的冰層下有廣袤的海洋」已成為一般性的常識,但畢竟目前還沒人「親自」鑽進歐羅巴裡面看個究竟,使得這說法雖然流行,但終究停留在假說的階段。到底科學家對歐羅巴地下海洋的存在有幾分把握?對於可能深埋在冰層下的驚人真相,又是如何推理得知的?

藉由觀測所得到的、歐羅巴衛星的平均密度與轉動慣量,在簡單的物理計算後,可以得出歐羅巴的外殼是由密度比矽酸鹽岩石或金屬低很多的水冰所組成,而且還蠻厚的。相較於外殼,辨明衛星內部是何種材質可就沒這麼容易了。歐羅巴存在地下海洋的說法,在伽利略號抵達後開始發酵。在許多研究者的貢獻之下,目前至少有四個資訊暗示了歐羅巴地底下非常的可疑:

  1.  潮汐作用力。眾所皆知,來自於月球的潮汐力是造成地球上海洋漲落的主要原因;而歐羅巴比起大多數的木星衛星都還要靠近木星,自然也會接受來自木星的重量級潮汐力。潮汐力提供的能量,在地球上使得海水循環運動,而在歐羅巴上,則會加熱表面冰層,並可能使內部熔化。
  2. 歐羅巴具有磁場。這代表內部有會導電的材質,並且有電流存在。所以,要不是內部有金屬核心(還得夠大才行,但是歐羅巴的平均密度不高,這可麻煩了…),就是存在鹹水海洋。
  3. 歐羅巴的表面特徵。歐羅巴的表面有著不尋常的線條。一般來說,除了地球之外,太陽系內的固體星體表面除了圓形的線條(這種線條通常來自於隕石撞擊或是火山活動),其他形狀的線條都很難見到。一旦發現了,就會成為行星地質學家感興趣的焦點。歐羅巴的表面有著密集的直線線條(如下圖),乍看之下很像冰上的裂隙,但實際上有些紋路還比較像山峰。另外歐羅巴表面有些地方非常崎嶇,像是許多山丘交錯在一起,稱之為「混沌地形」。雖然這奇怪的現象目前還沒找到確切的答案,不過要形成如此光景,這些冰底下不深的地方一定得有某種「東西」──可能是水,也可能是溫度較高的冰──與表面交互作用才得以生成。
  4. 。猶記在地球的海洋中,含量最多的陽離子除了鈉以外,其次就是鎂了。而鎂的化合物在紅外光波段的光譜特徵非常的明顯,這對我們來說是個好消息:當伽利略號在對歐羅巴表面調查的光譜中出現鎂的訊號後,看起來就像是找到了地底海的直接證據──歐羅巴表面出現了海洋乾涸後沉澱的鹽類!雖然最近的研究不支持此種「滄海桑田」的說法,但歐羅巴表面的鎂鹽(像是氯化鎂)來源很有可能仍然是冰下的地底海,雖然目前還不清楚是怎麼跑上來的就是了。

(歐羅巴表面紋路的近照,照片寬度約為225公里。不知這些紋路是怎麼形成的?是否暗示了地底下的結構?圖出處)

-----廣告,請繼續往下閱讀-----

說實在的,不少科學家已經對很有可能存在的這片海洋「肖想」好幾年了,總是絞盡腦汁的想要怎麼在不破壞可能存在的外星生態系的條件下,鑽進去探測看看。如果這種「鑽洞機」真的做出來了,我們或許可期待由歐洲太空總署籌畫的、預定於2022年發射、2030年抵達的「果汁計畫」(JUICE,全名是木星冰月探測器)幫我們打個前鋒,發掘地球以外的第二個水世界!

如果還想知道更多,可以參考

(歐羅巴的內層結構圖。除了可能的全球地下海洋外,局部性的混沌地形下也可能有較淺的地下湖泊。圖來源)

P.S.歐羅巴的編號名即為木衛二,但浪漫的衛星還是比較適合擁有一個浪漫的名字,對吧?

-----廣告,請繼續往下閱讀-----
文章難易度
Whyjay
17 篇文章 ・ 10 位粉絲
透過我的眼睛、鏡頭的眼睛、還有衛星的眼睛看世界的地球科學研究者。期望與你分享冰川下封存的秘密或是火山上隱藏的故事;夜晚,我們更可以遙望皎潔的明月,更遠的木星與冰衛星,甚至更遠更遠──某顆系外行星上的生命,或許也正拿望遠鏡看著我們討論人類最終的歸宿。推特:https://twitter.com/WhyjayZ (英文)

0

3
1

文字

分享

0
3
1
和外星人的第五類接觸!《三體》中的微中子通訊是真的?
PanSci_96
・2024/04/08 ・6799字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

不要回答!不要回答!不要回答!

Netflix 版「三體」終於上線了,你覺得與外星人接觸是安全的,還是冒險的?

其實啊,人類早就多次嘗試與外星文明接觸,三體中的「那個」技術,甚至也已經驗證成功了?到底誰能先與外星人取得聯繫?是中國還是美國?

接下來的討論可能會暴雷原版小說的設定,但應該不會暴雷 Netflix 版的劇情。

-----廣告,請繼續往下閱讀-----

如果你也有一點想跟外星人接觸,那就來看看人類到底已經跟外星人搭訕到什麼程度了吧!

我們與外星文明接觸過了嗎?

對於是否要與外星文明接觸,每個人都有不同想法。三體小說作者劉慈欣在小說中提出一種觀點,那就是人類太弱小,最好避免與外星文明接觸,以免招致不必要的風險。

但是回到現實世界,如果我們真的身處在三體的世界的話,那人類可真的是不停作死啊。早在 1974 年,科學家就利用阿雷西博天文台,向武仙座的 M13 球狀星團發射了一條著名的訊息,也就是「阿雷西博訊息」。這個目標距離地球不算遠,星星又多,被認為是潛在的外星文明所在。阿雷西博訊息中,則包含人類的 DNA 結構、太陽與九大行星、人類的姿態等資訊。每次想到總覺得是新開的炸雞排在發傳單攬客。

航海家金唱片。圖/wikimedia

除了無實體的電波訊息,人類還向太空中發送了實體的「信件」。1977 年,航海家探測器載著「航海家金唱片」進入太空。唱片中收錄了包含台語在內,55 種語言的問候語、大自然與鳥獸的聲音、115 張圖像、還用 14 顆銀河系內已知的脈衝星來標示出太陽系的位置。是一封向宇宙表達人類文明與友好意圖的信件。恩,如果接收到這個訊息的外星人不是很友善的話,那麼……。

-----廣告,請繼續往下閱讀-----

好吧,就算現在說應該要謹慎考慮接觸外星文明的風險,或許已經來不及了。對方是善還是惡,怎麼定義善或惡,會不會突然對我們發動攻擊,我們也只能聽天由命了。

反過來說,過了這麼久,我們收到外星文明的來信了嗎?

要確定有沒有外星文明,接收訊號當然跟發送訊號同等重要甚至更重要。1960 年,天文學家法蘭克.德雷克,就曾通過奧茲瑪計畫,使用直徑 26 公尺的電波望遠鏡,觀察可能有外星文明的天苑四和天倉五兩個恆星系統,標誌著「尋找外星智慧計畫」(the Search for Extraterrestrial Intelligence, SETI)的誕生。可惜,累積了超過 150 小時的訊息,都沒有搜尋到可辨識的訊號。

比較近的則是 1995 年的鳳凰計畫,要研究來自太陽附近一千個恆星所發出的一千兩百到三千百萬赫的無線電波。由於有經費支持,SETI 每年可以花五百萬美元,掃描一千多個恆星,但是目前還沒有任何發現。

中間有一個小插曲是,1967 年 10 月,英國劍橋大學的研究生喬絲琳.貝爾發現無線電望遠鏡收到了一個非常規律的脈衝訊號,訊號周期約為 1.34 秒,每次脈衝持續時間 0.04 秒。因為有可能是來自外星文明的訊號,因此訊號被開玩笑地取為 Little Green Man 1(LGM-1 號)。但後來他們又發現了多個類似的脈衝信號,最後證實這些脈衝是來自高速自轉的中子星,而非某個文明正在傳遞訊息。

-----廣告,請繼續往下閱讀-----
貴州天眼望遠鏡。圖/FAST

在中國也有探索外星生命的計畫,大家最關注的貴州天眼望遠鏡,直徑達五百公尺,是地球上最大的單一口徑電波望遠鏡。天眼望遠鏡在探索外星生命這件事,並不只是傳聞而已。2016 年 9 月天眼正式啟用後,也宣布加入 SETI 計畫。現在貴州天眼的六大任務之一,就包含探測星際通訊,希望能捕捉到來自其他星際文明的訊號。

而背負著地球最大單一口徑望遠鏡的名號,自然也引起不少關注。從 2016 年啟用到現在,就陸續出現不少檢測到可疑訊號的新聞。然而,這些訊號還需要經過檢驗,確定不是其他來自地面或地球附近的干擾源,或是我們過去難以發現的輻射源。可以確定的是,目前官方還未正式聲明找到外星文明訊號。

會不會是我們的通訊方法都選擇錯誤了?

即使電磁波用光速傳遞訊息,太陽系的直徑約 2 光年、銀河系直徑約 10 萬光年。或許我們的訊息還需要花很多時間才回得來,更別提那些被拋入太空的實體信件。航海家 1 號曾是世界上移動速度最快的人造物,現在仍以大約時速 6 萬公里的速度遠離地球,大約只有光速的一萬八千分之一倍。就算朝著最近的恆星——比鄰星飛去,最少也需要大約 7 萬 6 千年的時間才會到。

如果用電磁波傳遞訊息,又容易因為穿越星塵、行星、恆星等天體而被阻擋或吸收。不論是人類還是外星文明,都必須找到一個既快速,又不容易衰退的訊號,最好就是能以光速穿越任何障礙物的方式。

-----廣告,請繼續往下閱讀-----

在三體小說中,就給出了一個關鍵方法:微中子通訊。

微中子通訊是什麼?

微中子(Neutrino),中國通常翻譯為中微子,是一種基本粒子。也就是說它是物質的最基本組成單位,無法被進一步分割。這種粒子引起了廣泛關注,因為它與其他物質的交互作用極弱,並且以極高的速度運動。微中子能夠輕易穿過大部分物質,通過時幾乎不受阻礙,因此難以檢測。

在宇宙中,微中子的數量僅次於光子,是宇宙中第二多的粒子。有多多呢?地球上面向太陽的方向,每平方公分的面積,大約是你的手指指尖,每秒鐘都會被大約 650 億個來自太陽的微中子穿過,就是這麼多。但是因為微中子與物質的反應真的是太弱了,例如在純水中,它們平均需要向前走 250 光年,才會與水產生一次交互作用,以至於我們幾乎不會發現它們的存在。

藉由微中子撞擊氣泡室中氫原子裡的質子,進行微中子觀測,照片右方三條軌跡的匯集之處便是帶電粒子撞擊發生處。圖/wikimedia

但是對物理學家來說,更特別的是微中子展示出三種不同的「味」(flavor),也就是三種樣貌,電子微中子,渺子微中子和濤微中子,分別對應到不同的物理特性。 在粒子物理學裏,有個「標準模型」來描述強力、弱力及電磁力這三種基本力,以及所有基本粒子。在這個標準模型中,微中子是不具備質量的。 然而,當科學家發現微中子竟然有三種味,而且能透過微中子振盪,在三種「味」之間相互轉換,證明了微中子必須具有質量,推翻了標準模型中預測微中子是無質量的假設,表示標準模型還不完備。

-----廣告,請繼續往下閱讀-----

微中子在物理界是個非常有研究價值的對象,值得我們花上一整集來好好介紹,這邊就先點到為止。如果你對微中子或其他基本粒子很感興趣,歡迎在留言催促我們。

我們現在只要知道,微中子不僅推翻了標準模型。宇宙中含量第二多的粒子竟然有質量這件事情,更可能更新我們對宇宙的理解,以及增加對暗物質的了解。

但回到我們的問題,如果微中子幾乎不與其他粒子交互作用,我們要怎麼接收來自外星文明的微中子通訊呢?

要如何接收微中子?

Netflix 版《三體》預告片中,這個一閃而過,充滿金色圓球,帶有點宗教與科幻風格的大水缸,就是其中的關鍵。

-----廣告,請繼續往下閱讀-----

這個小說中沒有特別提到,但相信觀眾中也有人一眼就看出來。這就是位在日本岐阜縣飛驒市,地表 1,000 公尺之下,由廢棄礦坑改建而成的大型微中子探測器「神岡探測器」。

由廢棄砷礦坑改建而成,深達千米的神岡探測器。圖/Super-Kamiokande Construction

探測器的主要結構是一個高 41.4 米、直徑 39.3 米的巨大圓柱形的容器。容器的內壁上安裝有 11200 個光電倍增管,用於捕捉微小的訊號。水缸中則需灌滿 5 萬噸的超純水。捕捉微中子的方式是等待微中子穿過整座探測器時,微中子和水中的氫原子和氧原子發生交互作用,產生淡藍色的光芒。這與我們在核電系列中提到,核燃料池中會發出淡藍色光芒的原理一樣,是當粒子在水中超越介質光速時,產生類似音爆的「契忍可夫輻射」。

填水的神岡探測器。圖/Super-Kamiokande

也就是說,科學家準備一個超大的水缸來與微中子產生反應,並且用超過一萬個光電倍增管,來捕捉微小的契忍可夫輻射訊號。

但這樣的設計十分值得,前面提到的微中子可以在三種「味」中互相轉換,就是在這個水槽中被證實的。

-----廣告,請繼續往下閱讀-----

這座「神岡探測器」在建成後 40 幾年來,讓日本孕育出了 5 位的諾貝爾物理獎得主。

三體影集選在這邊拍攝,真的要說,選得好啊。

話說回來,有了微中子的捕捉方法之後,現實中還真的有人研究起了微中子通訊!

微中子通訊是怎麼做到的?

來自羅徹斯特大學與北卡羅來納州立大學的團隊,在 2012 年發表了一篇文章,說明它們已成功使用微中子,以接近光速的速度將訊息穿過 1 公里的距離,其中有 240 公尺是堅硬的岩石。訊息的內容是「Neutrino」,也就是微中子。

這套設備準備起來也不簡單,用來發射微中子的,是一部強大的粒子加速器 NuMI。質子在加速繞行一個周長 3.3 公里的軌道之後,與一個碳標靶相撞,發出高強度的微中子射束。

用磁場將微中子聚集成束的 NuMI。圖/Fermilab

用來接收微中子的則是邊長約 1.7 公尺,長 5 公尺的六角柱探測器 MINERvA,一樣身處於地底 100 公尺的洞穴中。

當然,這兩套設備的重點都是拿來研究微中子特性,而不是為了通訊設計的。團隊只是趁著主要任務之間的空檔,花了兩小時驗證通訊的可能性。

但微中子那麼難測量,要怎麼拿來通訊呢?團隊換了一個思維,目標只要能傳出0跟1就好,而這裡的0就是沒有發射微中子,而1則是發出微中子,而且是一大堆微中子。多到即使每百億個微中子只有一個會被 MINERvA 偵測到,只要靠著數量暴力,探測器就一定能接收到微中子。最後的實驗結果,平均一秒可以傳 0.1 個位元的訊息,錯誤率 1%。

MINERvA 實驗中的中微子偵測器示意圖。圖/wikimedia

看起來效率並不實用,卻是一個好的開始。

因為微中子「幾乎能穿透所有物體」的特性,即便我們還沒有其他外星文明可以通訊,或許還是有其他作用。例如潛水艇的通訊、或是與礦坑深處的通訊。進一步說,他幾乎可以在地球上的任一兩點建立點對點的直線通訊,完全不用擔心中間的阻礙。而對於現在最夯的太空競賽來說,月球背面的通訊問題,微中子也可以完美解決。

那麼,在微中子的研究上,各國的進度如何了呢?

除了前面提到的超級神岡,世界上還有幾個有趣的微中子探測器,例如位於加拿大的薩德伯里微中子觀測站(SNO),它有特殊的球體設計並且改為填充重水,專門用來觀測來自太陽的微中子。

薩德伯里中微子探測器。圖/wikimedia

而位於南極的冰立方微中子觀測站,則是將探測器直接埋在南極 1450 到 2450 公尺的冰層底下,將上方的冰層直接作為捕捉微中子的水。非常聰明的設計,這也讓冰立方成為地球上最大的微中子探測器。

除了已經在使用的這幾個探測器之外,美、中、日也即將打造更先進、更強大的探測器。

預計在美國打造的國際計畫——地下深處微中子實驗(Deep Underground Neutrino Experiment),預計成為世界上最大的低溫粒子偵測器。接收器位於南達科他州的地底一公里深處,用作研究的微中子訊號源則來自 1300 公里外的費米實驗室,百萬瓦等級的質子加速器,將產生有史以來最強的微中子束。這台地下深處微中子實驗(Deep Underground Neutrino Experiment)的縮寫非常有趣,就是 DUNE,沙丘。

中國呢,則預計在廣東的江門市,用 2 萬支 51 公分光電倍增管和 2 萬 5000 支 7.6 公分光電倍增管,在地底 700 公尺深處,打造巨大球形的微中子探測器-江門中微子實驗室,內部可以填充兩萬噸的純水。最新的消息是預計 2024 年就能啟用。

最後,經典的超級神岡探測器也不會就此原地踏步,日本預計打造更大的超巨型神岡探測器。容積將提升 5.2 倍、光電管從 11200 個變成 4 萬個,進一步研究微中子與反微中子之間的震盪。

超巨型神岡探測器設計圖。圖/Hyper-Kamiokande

結論

這些微中子探測器的研究目標必然是微中子本身的特性。但既然微中子通訊是有可能的,在任務之餘研究一下這個可能性,也不是說不行吧。

雖然我們現在還沒連繫上我們的好鄰居,但很難說明天就有哪個外星文明終於接收到我們對外宣傳的訊息,發出微中子通訊問候,甚至按圖索驥跑來地球。

至於那時我們應該怎麼辦呢?我們的網站上有幾篇文章,包括介紹黑暗森林法則,以及從《異星入境》看我們要如何與語言不通的外星文明溝通。有興趣的朋友,可以點擊資訊欄的連結觀看。在外星人降臨之前,也不妨參考我們的科學小物哦。

最後問問大家,你覺得我們應該主動聯繫外星文明嗎?

  1. 當然要,我相信探索一定是好的,我覺得引力波通訊更有機會!
  2. 先不要,我已經可以想像被外星文明奴役的未來了!
  3. 為了維繫美中之間的平衡,由台灣來率先接觸外星人,當仁不讓啊!

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

延伸閱讀

參考資料

討論功能關閉中。

PanSci_96
1219 篇文章 ・ 2193 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
2

文字

分享

0
3
2
海洋盛宴——抹香鯨落
黑潮海洋文教基金會_96
・2023/11/05 ・3099字 ・閱讀時間約 6 分鐘

  • 文 胡潔曦|黑潮海洋文教基金會 鯨豚保育研究員
  • 本文轉載自黑潮海洋文化基金會《海洋盛宴——抹香鯨落》,歡迎喜歡這篇文章的朋友訂閱支持黑潮喔!
圖一、抹香鯨舉尾下潛

編按:本文主要內容與圖片摘錄、翻譯自文獻Three-year investigations into sperm whale-fall ecosystems in Japan,期望在頻繁目擊抹香鯨的 7 月,跟大家分享抹香鯨落的研究。

生存在深海中並非容易的事,由於深海裡缺乏陽光與有機物質,許多生物是藉著海水表層落入深海的有機物質維生。當鯨豚死亡後沉入海底,這段過程、遺體以及過程中所形成的生態系均可被稱為「鯨落」。鯨落可以說是生命的延續之源,而這些殞落至海底的鯨豚有如「金山銀山」,不僅能提供大量的有機物,同時也將許多硫化物帶入海底,造福許多海洋生命,因此也有一句話說:「鯨落,萬物生」。這篇文章透過閱讀國外文獻與整理,希望跟大家分享抹香鯨死亡之後的貢獻!

圖二、世界目前已知的鯨落位置,Implant=人工鯨落  Fossil=鯨落化石  Natural=自然鯨落(Li et al. 2022

故事的開始——集體擱淺在日本的抹香鯨

在 2002 年 1 月,日本的西南海岸發生了一起集體擱淺,共發現了 14 隻抹香鯨,而其中 12 隻抹香鯨被綁上水泥塊後,被當地政府沉入了 Nomamisaki 岬角周邊深度大約兩、三百公尺的海裡,形成了多座人工鯨落。當時有許多學者對於抹香鯨落感到好奇,究竟牠們會吸引來哪些生物?而抹香鯨龐大的遺體會需要花費多長時間分解呢?透過這項研究,或許能讓人們對大型齒鯨落的分解過程更加瞭解。

圖三、編號 12 之抹香鯨在 2003 年之手繪插圖(Fujiwara et al. 2007

事實上,在 2002 年以前,多數的鯨落研究出自於美國的加利福尼亞州外海,並以鬚鯨為主要研究對象,而這些鯨落的深度幾乎都落在一、兩千公尺深,比起這次抹香鯨落群的深度深了非常多。而這次大量出現在日本西南海域的多座人工鯨落有著種種獨特性,包含了:深度淺、是大型齒鯨的鯨落等等,也讓學者們充滿好奇心。

-----廣告,請繼續往下閱讀-----

究竟要如何長期觀察抹香鯨落呢?

閱讀至此,不知道讀者們是否有一項疑問?在兩三百公尺深的海裡,既缺乏可見光,同時也承受著數十倍的大氣壓,在這樣的條件下到底要如何觀察抹香鯨落呢?「ROV——水下探測載具」即是這個研究的一大助手,能夠幫助科學家們突破這些困難,不僅能在深海中蒐集珍貴的影像,也可以完成採集的工作。而在團隊耗費了 3 年運用水下載具追蹤其中的五隻抹香鯨後,他們也有了些有趣的收穫,透過圖四可以看到這段時間抹香鯨的外觀變化。

圖四、編號 12 之抹香鯨 a. 2003 年 7 月  b. 2004 年 7 月  c. 2005 年 7 月利用水下探測載具拍攝影像(Fujiwara et al. 2007

經過數年的追蹤後,研究團隊發現,抹香鯨落歷經分解的速度堪稱飛快!根據 2003 年的鯨落研究,學者將鯨豚分解的過程定義為下述四個階段(Smith and Baco 2003),而第一個階段到最後階段可能會歷時數年甚至到數十年,當鯨豚的遺體越大,可能耗時越長:

  1. 移動清道夫階段(Mobile-scavenger):生物會快速消耗掉鯨豚體表上的肉與脂肪。
  2. 機會主義者階段(Enrichment opportunist):生物開始進駐鯨豚裸露的骨頭及周邊富含營養的底層泥沙上。
  3. 化能自養階段(Sulphophilic):骨骼釋放硫化物,供養海洋中依靠硫化物維生的生物。
  4. 骨礁階段(Reef):在所有有機物質被消耗之後,即會進入骨礁的階段。

註解:上述中文名詞翻譯參考自國家地理頻道及國立海洋科技博物館 鯨落展區。

鯨落最快被消耗掉的部分是身上的肉跟脂肪,而這份文獻研究的 5 座抹香鯨落,肉跟脂肪在經過 1 年之後已幾乎被消耗殆盡;經過 1.5 年之後,抹香鯨落已進入化能自養階段,骨骼開始釋放硫化物質;有些大型鯨落從化能自養階段轉為骨礁期要歷經數十年,根據這項研究發現,部分抹香鯨落竟在 3 年後就能夠進入骨礁期,身上所有的有機質都被消耗殆盡,而這樣的進度相較於過去鬚鯨落的研究是非常快的!研究人員初步推測,可能是因為此處的平均水溫相較其他鯨落研究的海域高,生物分解的速度比較快。

-----廣告,請繼續往下閱讀-----

抹香鯨落上意想不到的生物多樣性

這次的研究共有發現超過百種生物聚集在抹香鯨落周邊,包含軟體動物門、多毛綱與甲殼綱的生物等,在 1.5 年後,貽貝是抹香鯨骨骼上最為豐富的生物類群(圖五)。而抹香鯨落整體的生物多樣性在到達 3.5 年時來到高峰,紀錄中共有八十多種生物出現。

圖五、位在抹香鯨脊椎骨的貽貝(Fujiwara et al. 2007

除了確認抹香鯨的腐化速度之外,研究人員也會在探測載具每次下海時採集底部的泥沙,經分析發現,抹香鯨身體下方泥沙中的硫化物濃度,隨著鯨落分解的時間越久,濃度也會逐漸提高,並吸引來大量仰賴硫化物生存的生物。為了進一步確認周遭環境的生物是否與抹香鯨身上的有差異,研究人員也將抹香鯨 10 米以內與外的生物做了比較,發現鯨落 10 米以外的物種與鯨落上的生物完全沒有重疊,也證明了鯨落的出現確實吸引來許多的生物。

鯨落,萬物生

鯨落的各個分解階段吸引了許多生物造訪,肉與脂肪等在幾個月內快速地被消耗掉,有機碎屑也能讓周邊海底的富含養分,而抹香鯨骨能釋放硫化物數年,部分大型鯨甚至可能長達數十年。「鯨落,萬物生」,在鯨豚生命的最後一章,牠們的身體緩緩沉入海底,成為了大量生物的食物來源。至 2022 年為止,目前世界已知鯨落共有約 160 座,也希望隨科技進步,人們能更深入認識鯨落為環境帶來的影響。

影片分享:美國於2019年在NOAA保護區發現的深海鯨落

-----廣告,請繼續往下閱讀-----

參考資料

  1. Fujiwara, Y., Kawato, M., Yamamoto, T., Yamanaka, T., Sato-Okoshi, W., Noda, C., Tsuchida, S., Komai, T., Cubelio, S.S., Sasaki, T., Jacobsen, K., Kubokawa, K., Fujikura, K., Maruyama, T., Furushima, Y., Okoshi, K., Miyake, H., Miyazaki, M., Nogi, Y., Yatabe, A. and Okutani, T. (2007), Three-year investigations into sperm whale-fall ecosystems in Japan. Marine Ecology, 28: 219-232.
    https://doi.org/10.1111/j.1439-0485.2007.00150.x
  2. Li Q, Liu Y, Li G, Wang Z, Zheng Z, Sun Y, Lei N, Li Q and Zhang W (2022) Review of the Impact of Whale Fall on Biodiversity in Deep-Sea Ecosystems. Front. Ecol. Evol. 10:885572. doi: 10.3389/fevo.2022.885572
  3. https://oceanservice.noaa.gov/facts/whale-fall.html
  4. https://natgeomedia.com/environment/article/content-6001.html
  5. https://www.soest.hawaii.edu/oceanography/faculty/csmith/Files/Smith%20and%20Baco%202003.pdf
  6. http://hi.people.com.cn/BIG5/n2/2020/0409/c228872-33936490.html
黑潮海洋文教基金會_96
4 篇文章 ・ 1 位粉絲
  黑潮海洋文教基金會,1998年於花蓮成立,是臺灣第一個為「鯨豚與海洋」發聲的民間非營利組織。最初以鯨豚調查為開端,多年來深耕於海洋議題、環境教育與科學調查,如同一股陸地上的黑潮洋流溫暖而堅定,期許每個臺灣人的心中都有一片海洋。

2

2
1

文字

分享

2
2
1
臺灣的水之道?帶你潛入記憶中的海洋
研之有物│中央研究院_96
・2023/05/28 ・4805字 ・閱讀時間約 10 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|劉韋佐
  • 責任編輯|田偲妤
  • 美術設計|蔡宛潔

被海洋環繞的台灣

電影《阿凡達:水之道》中有一幕說道:「海洋環繞著你,也在你體內」、「出生前、死亡後,海洋都是你的歸宿」傳遞了海洋與人類密不可分的關係,四面環海的臺灣是否也有發人深省的海洋故事呢?

中央研究院「研之有物」專訪院內歷史語言研究所陳國棟研究員,他是熟知「水之道」的一員,從清代粵海關、廣州行商等海上貿易研究,跨入船舶、航海、島嶼等古今海洋知識領域。想了解更多屬於臺灣的水之道故事?快跟著陳國棟潛入記憶中的海洋吧!

基隆八斗子海邊 圖|研之有物
基隆八斗子海邊。圖/研之有物

你與「海洋」的距離

你有多久沒有親近大海了?臺灣四面環海,平均一小時車程就能抵達海邊,但我們卻很難說自己是「熟悉海」的海洋民族。在過去有很長一段時間,對臺灣人來說,有種最遙遠的距離叫「海洋」。

-----廣告,請繼續往下閱讀-----

時間回到 1949 至 1987 年戒嚴時期的臺灣,政府為了防範對岸軍民入侵,也同步限制一般民眾靠近海岸。當時的法律規定進出海岸需經過申請,讓臺灣的海岸線成為生人勿近的禁地。直到解嚴後,人們才有較多機會親近大海,探索屬於臺灣的海洋文化。

令人陷入回憶的午後時光,我們前往中研院歷史語言研究所拜訪陳國棟研究員,兒時成長於海邊,長大後研究明清經濟史、東亞海洋史與工藝美術史的他,與我們侃侃而談他的海洋回憶與研究趣事。現在,一起跟著陳國棟潛入記憶中的海洋吧!

懷念那住海邊的時光

陳國棟兒時住在北海岸公路旁一處叫作「灰磘子」的村落,他笑著說,現在的人都喜歡靠海的房子,希望在「海景第一排」坐擁無敵美景,但真正住過海邊的人才能體會,靠海而居有多麼不方便!

夾帶鹽份的海風會侵蝕房屋,在海邊走動容易被礁石割傷,很少漁村居民會享受住海邊的樂趣,只有小孩除外。

-----廣告,請繼續往下閱讀-----

「小時候我們很能自得其樂!」陳國棟對海邊的植物印象深刻,特別是臺灣海岸常見的黃槿、林投樹,背後藏有許多兒時回憶與歷史故事。

1950 年代,國民政府執政初期仍有許多美軍駐臺,小朋友會把黃槿花蕊尖端黏在鼻子上,模仿西方人的「凸鼻仔」;或是用刀片把林投葉刺刺的邊緣削去,用來編織笛子、風車之類的玩具。

黃槿,錦葵科木槿屬,是海岸防風優良樹種。葉子可作炊粿的襯墊材料,樹皮能製造繩索,根有解熱、催吐療效。 圖|Wikimedia
黃槿,錦葵科木槿屬,是海岸防風優良樹種。葉子可作炊粿的襯墊材料,樹皮能製造繩索,根有解熱、催吐療效。圖/Wikimedia

此外,這些生長在海邊的植物還曾發揮「抵禦外敵」的功用。1883 年清法戰爭爆發,次年 10 月法軍從淡水一帶登陸,必須穿過長滿林投樹和黃槿的海岸。

林投樹的葉緣佈滿小尖刺,法軍越過時不僅被割傷,更被茂密的黃槿樹林給打散隊伍,最終在守軍的伏擊下戰敗。清軍就靠著臺灣的「天然屏障」打了少數一場勝仗。

-----廣告,請繼續往下閱讀-----
林投樹,露兜樹科露兜樹屬,粗長的氣生根能於海風強勁處抓住土地,是臺灣海岸常見的防風定沙植物。果實和樹莖末端嫩心可食用,達悟族人會用氣生根製成曬飛魚的繫繩。 圖|Wikimedia
林投樹,露兜樹科露兜樹屬,粗長的氣生根能於海風強勁處抓住土地,是臺灣海岸常見的防風定沙植物。果實和樹莖末端嫩心可食用,達悟族人會用氣生根製成曬飛魚的繫繩。圖/Wikimedia

陳國棟雖然在十歲後離開海邊村落,他與海洋的緣分卻未了,因研究明清貿易史的關係再次接觸海洋。為了解決研究過程中碰到的問題,他開始與不同領域學者共同鑽研船舶、導航、島嶼等海洋知識,更蒐集許多古今中外的海洋故事。

談話過程中,陳國棟拿出有如魔法袋的手提袋,掏出一件件與海洋相關的歷史文獻,帶我們回到大航海時代及清領時期的臺灣,訴說一段段在海上漂泊的故事。

那些依海維生的女人

說著說著,陳國棟朗誦起一首收錄在《全臺詩》中的小詩〈理髮〉:

圖|研之有物
理髮。/研之有物

這首詩的作者名叫謝采蘩,是福建侯官謝金鑾的女兒,她在乾隆年間隨父遊宦來到臺灣,搭船渡海的經驗啟發她的創作靈感。

-----廣告,請繼續往下閱讀-----

以前的女生會把頭髮綁得比較緊,整理頭髮時需要先用水梳頭,但在船上最缺乏的就是淡水,只好浸了三宵海水,到最後頭髮都鬆了,略顯狼狽!

不同於過去常見的海上絲路、海盜或渡臺悲歌記載,這首詩描述了一幅日常溫馨的畫面,而且更難得的是,這是一名女性在海上留下的回憶。

傳統上,對於女性登船、或在船上作業通常有所禁忌,陳國棟表示,問題出在很多傳說來自握有話語權的文人,禁忌之說可能是受儒家思想影響,不希望女生拋頭露面,更別提出海闖蕩。

然而在現實生活中,海邊常可見到女性掌權或辛勤勞動的身影。例如 19 世紀時,一些西方船隻行經臺灣,就曾驚訝地見到許多女性在海上賣力工作。

臺灣更有一句俗諺「澎湖查某,臺灣牛」,形容澎湖的女性和牛隻一樣吃苦耐勞。陳國棟曾聽聞澎湖有座女人島,島上多由女性獨立操持家務。在航海技術不發達的年代,男人出海後未必能平安回家,女性必須到海邊捕撈魚蝦貝類餵養全家。

-----廣告,請繼續往下閱讀-----

雖然討海是一件苦差事,但家中生計迫切到一定程度後,性別已不是太重要的問題了!

澎湖北寮村潮間帶可見到婦女採海菜的身影 圖|中央研究院臺灣史研究所
澎湖北寮村潮間帶可見到婦女採海菜的身影。圖/中央研究院臺灣史研究所

有字天書?掛荷蘭旗的清朝船隻

不一會功夫,陳國棟又從袋子內掏出多本文獻,乍看圖文並茂的記載,仔細一瞧,上頭的字雖然近似我們熟悉的漢字,卻完全看不懂!

猜猜這份文獻記載的是什麼? 圖|研之有物
猜猜這份文獻記載的是什麼?圖/研之有物

原來這些文獻記載的是造船方法,師傅將帆船不同部位的製作準則寫在傳統的「數簿仔」(siàu-phōo-á;帳本)上,當中包含船舶龍骨的製作、拿捏尺寸和比例的方法等,但紀錄者選擇用自己人才看得懂的符號來記載。

這讓歷史學家著實傷透腦筋,需要參考更多歷史文獻,或與其他造船專家一起合作,才有可能破解這些「有字天書」。

-----廣告,請繼續往下閱讀-----

接著,陳國棟再拿出另一張故宮典藏的〈一號同安梭船圖〉,這是清朝海軍仿同安船製作的戰船設計圖,上頭記載了船身長度、樑頭闊(寬)度等細部尺寸。

看似平凡的船圖其實隱藏著一段歷史疑雲,注意看船隻最左邊的船桅上,竟掛了一幅紅白藍橫條構成的荷蘭國旗!這不是清朝時期的戰船嗎?怎麼會掛著荷蘭國旗呢?

一號同安梭船圖 圖|國立故宮博物院
一號同安梭船圖。圖/國立故宮博物院

揭曉答案之前,讓我們先回到 16、17 世紀風起雲湧的東亞海域。

當時叱吒風雲的海上強權非荷蘭東印度公司莫屬,周遭海域國家的船隻為避免被荷蘭人打劫,也想借用荷蘭人的聲勢來威嚇對手,於是開始在船桅上懸掛荷蘭國旗。

-----廣告,請繼續往下閱讀-----

有趣的是,鄭成功的父親鄭芝龍在向明朝投降的前一年(1627 年),其屬下的船舶也曾掛著荷蘭國旗在海上行劫。30 多年後,鄭成功於 1662 年將荷蘭人驅離臺灣,但荷蘭國旗並沒有就此消聲匿跡,一直到 19 世紀中葉,都還能見到清朝的帆船掛著荷蘭國旗。

事實上,隨著荷蘭海上勢力逐漸式微,懸掛荷蘭國旗早已失去自我保護或倚仗聲勢的功能,航海人單純將荷蘭國旗當成裝飾用的綵旗,象徵吉祥、勝利的標誌。

陳國棟相當珍視手上亟待破解的文獻,由於東亞地區多數人受大陸文化影響,生活經驗多與陸地相關,對海洋知識一知半解,即便蒐集到航海人留下的文獻也難以解讀。

此外,每件文獻都是得來不易的文化寶藏,雖然清領時期常有中國官員、赴京趕考學生等知識份子搭船往返兩岸,但真正有心記錄海洋文化、航海經驗者卻是少數。

「很多人可能一上船就開始暈船,昏睡中能記得的事物自然不多!」陳國棟笑著說。在訴說船舶故事的當下,古代的海洋記憶彷彿搭上帆船來到 21 世紀的談話之間。

掉入深邃的歷史之海

中研院歷史語言研究所陳國棟研究員 圖|研之有物
中研院歷史語言研究所陳國棟研究員。圖/研之有物

與陳國棟談話時,時常一不留神就掉入歷史與記憶的漩渦之中,他也特別在著作中寫道:

我歷經人生,因此我珍惜記憶,愛重歷史。

這不禁令我們好奇,對歷史學家來說「記憶」有何特別意義?陳國棟從 40 年前進入中研院的那刻談起,再次帶領我們墜入往日記憶之中。

在進入歷史語言研究所以前,陳國棟最初是在經濟研究所從事經濟史研究。當時有些研究人員是隨國民政府來臺的外省第一代,在生活記憶上跟臺灣本省人有許多不同之處,他們總喜歡和陳國棟聊聊在中國的往事。

「他們大概覺得,跟我這個歷史學家聊天可以得到比較多反饋吧!」陳國棟笑著說:「人們年紀越大,越會對過去的事情產生興趣。」這段與前輩共事的經歷讓陳國棟開始思考「記憶」與「回憶」對人類的意義所在。

「記憶」與「回憶」在英文裡都可用「memory」表示,不過「回憶」還有另一種更貼切的說法「recollection」,指的是過往的記憶存入腦海深處,某時某刻又再度拾回。

「你必須要有記憶,才能夠回憶。」陳國棟指出記憶的重要性:

因為有記憶,你可以明白自己在歷史、或一段時空中的定位。透過記憶,感受個人的存在感,你會知道你從哪裡來——回憶這些,會讓你感到安心。

陳國棟強調,無論是個人或社會群體的記憶都很重要。例如我們常從祖父母處聽到遙遠時空的故事,不同世代之間經由口耳相傳,建構可以一起回味的家國記憶,進而塑造自己的身分認同。

然而,在這個快速變遷的時代,以往的記憶建構模式正面臨危機,許多記憶還沒被收藏就已消失殆盡,這可能會加深世代之間共享回憶、彼此認同的困難度,讓年輕人與長輩的代溝越來越深。

身為一名歷史學家,陳國棟認為自己是幸運的,不只能保有屬於自己的記憶,還有更多機會去接觸並記錄其他群體的記憶。

在這個溫暖的午後時光,我們與陳國棟共享了一段屬於臺灣與東亞海域的海洋故事。你與海洋之間又有什麼獨特的回憶呢?不妨找個機會記錄下來、與他人分享吧!

你與海洋之間有什麼獨特的回憶呢?不妨找個機會記錄下來、與他人分享吧!圖為西子灣望向高雄港出海口。 圖|研之有物
你與海洋之間有什麼獨特的回憶呢?不妨找個機會記錄下來、與他人分享吧!圖為西子灣望向高雄港出海口。圖/研之有物

延伸閱讀

所有討論 2
研之有物│中央研究院_96
296 篇文章 ・ 3415 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook