0

0
0

文字

分享

0
0
0

如瞳般的螺旋星雲

臺北天文館_96
・2012/10/08 ・826字 ・閱讀時間約 1 分鐘 ・SR值 505 ・六年級

上圖是將史匹哲太空望遠鏡(Spitzer Space Telescope)和星系演化探測器(Galaxy Evolution Explorer,GALEX)分別以紅外和以外觀測到的螺旋星雲(Helix nebula)影像予以綜合的結果。螺旋星雲是一顆正在步入死亡的恆星,在死亡之途中,這顆恆星原本富含塵埃的外層逐漸逸入太空,受到原恆星熾熱核心所發出的強烈紫外輻射而被激發發光。

螺旋星雲,另一編號為NGC 7293,距離地球約650光年,位在寶瓶座方向。這是個典型的行星狀星雲(planetary nebula),18世紀便已被發現,因為乍看之下像是木星等氣體巨行星一樣具有盤面特徵,因而得名。行星狀星雲其實是類似太陽的恆星,這類恆星在一生中的絕大部分時間內,核心都在進行氫融合成氦的核融合反應;事實上,這個核融合反應提供了這類恆星,當然包含我們的太陽,所有發出的光和熱。根據天文學家估計,我們的太陽再過50億年之後,便會進入死亡階段,逐漸發展成一個行星狀星雲。

當核心的氫「燃料」用盡,恆星會轉而開始氦融合成混合了碳、氮或氧的另一階段核融合反應。事實上,氦也會有用盡的一天,此時這顆類太陽恆星便逐漸步入死亡之途,將外層氣體向外推送,留下小而熾熱的緻密核心,稱為白矮星(white dwarf)。白矮星的直徑僅與地球相當,但質量卻與恆星原本的質量相差無幾,因此密度很大;事實上,在白矮星表面,一湯匙的物質可能就相當於地球上的幾頭大象一樣重呢!

來自白矮星的強烈紫外輻射將向外吹送的氣體和塵埃殼層予以加熱,使它們在紅外波段非常明亮,得以被史匹哲太空望遠鏡捕捉到,右上圖中的紅色、黃色與綠色為紅外資料。GALEX則是負責捕捉紫外輻射,即右上圖中的藍色部分。不過,史匹哲的紅色和GALEX的藍色在星雲中間部分混和後卻是變成粉紅色。至於星雲外圍,史匹哲力所不能及之處的紅外資料則藉由廣角紅外巡天探測器(Wide-field Infrared Survey Explorer,WISE)的資料予以補強。白矮星本身是位在星雲中心內,一個如針點般大小的粉白小點。

-----廣告,請繼續往下閱讀-----

資料來源:The Helix Nebula: Bigger in Death than Life. NASA JPL [October 03, 2012]

轉載自 網路天文館

文章難易度
臺北天文館_96
482 篇文章 ・ 38 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

7
5

文字

分享

0
7
5
宇宙「新」光──新星、超新星與千級新星
全國大學天文社聯盟
・2022/03/30 ・4272字 ・閱讀時間約 8 分鐘

  • 文/語星葉,與一隻米克斯黑狗簡單地生活在新竹,正在努力成為天文學家。

看星星,是大多數人接觸天文的契機。現今,看見滿天星斗對於被光害荼毒的都市人而言是一種奢侈,相較於古時夜無燈火,總有許多靜謐無光的夜晚,能讓人們一同仰望星空,思索空中的奧秘。多數星星安靜地閃爍,被人類賦予神話故事,成了現在為人所知的「星座」。另外,有少數幾顆不安分地移動著,它們的移動方式看似有規則,有時候卻會逆行,這些在天空中漫遊的星星,我們就稱之為「行星」 。

在極少數的情況,我們會發現過去未曾注意到的星點,猶如初來乍到的旅客,古時中國稱之為「客星」 [註一]。現在我們知道,這些看似新生的星,實則氣數已盡。利用強大的各波段望遠鏡,人類偵測到大量「新」光,並提出多種機制來解釋星光快速且劇烈改變的現象。

本文將介紹 3+1 種天文現象,分別為「新星(Nova)」、「超新星(Supernova)」和「極亮超新星(Superluminous supernova / Hypernova)」,以及「千級新星(Kilonova)」。前兩者的觀測歷史源遠流長,後兩者則歸功於現代發達的觀測技術,才讓我們得以一探究竟。

蟹狀星雲,古時中國稱之為天關客星,為西元 1054 年的超新星爆炸殘骸。圖/NASA, ESA, J. Hester and A. Loll (Arizona State University)

新星:我可一點都不年輕!

新星(Nova)來自拉丁文,有 「new」 之意。過去,人們仰望寧靜無波(一成不變)的星空時,若是偶然發現從未見過的星星,便稱之為「新星」。但如今我們知道,新星其實不是剛誕生的星,而是古老的小質量恆星,會在它們的生命終章──白矮星時期,突然變得異常明亮。

-----廣告,請繼續往下閱讀-----

白矮星是小質量恆星死亡後的產物,緻密、溫度高,但亮度低,平常不易觀測。一般而言,白矮星是非常穩定的天體,但如果身邊有個伴,情況就不同了。若是白矮星和伴星互繞的距離過近,使得伴星的氫被吸向白矮星表面,並在其表面點燃核融合反應,產生劇烈的光度變化,讓白矮星成為用肉眼可見的「新星」。

近年,天文學家發現,新星的出現經常伴隨強烈的伽瑪射線,推測是來自新星爆發時產生的衝擊波。後續研究指出,新星的高光度也是以衝擊波作用為主,而不是來自表面的核融合反應,打破了以往既有的觀點。

藝術家繪製的假想圖。右側的白矮星吸走左側伴星的氫,成為亮度極高的新星。圖/NASA/M.Weiss

超新星──宇宙中的燦爛花火

超新星(Supernova)顧名思義是新星的 Super 版,比「新星」更亮的星星──天文名詞總是取得如此淺顯易懂。超新星的光度遠超越新星,其形成機制也有所不同。

目前科學界認為超新星有兩種不同的形成機制,分別為「熱核超新星(Thermonuclear supernova)」與「核心塌縮超新星(Core-collapse supernova)」。

「熱核超新星(Thermonuclear supernova)」前身和新星一樣是白矮星,差別在於熱核超新星爆炸極具毀滅性。當白矮星的質量增加到「錢德拉賽卡極限(Chanfrasekhar limit)」,也就是臨界值時,引爆其核心的碳元素將劇烈爆炸,將使白矮星灰飛湮滅。質量增加是因為白矮星身邊有個伴,可能是兩個白矮星白頭偕老、最終合併,也可能和新星一樣是老少配,然後白矮星吸走年輕伴星的表面物質。但究竟是哪種配對導致熱核超新星爆炸,天文學家還在熱議。

-----廣告,請繼續往下閱讀-----

「核心塌縮超新星(Core-collapse supernova)」則來自大質量恆星核心塌縮後造成的熱壓爆炸。當大質量恆星的核心燃料用罄,無法支撐極強的重力而塌縮時,就會產生巨量的熱能,並向外爆發。整個過程僅以秒計。爆發後,周圍形成漂亮的超新星殘骸,核心則塌縮成中子星或黑洞。

值得一提的是,超新星是少數能夠串聯古今天文學的研究領域。歷史上數個著名的超新星爆發事件,在世界各地的文明史料中皆能發現記錄。目前推測人類文明見過最亮的超新星事件是 SN1006(西元 1006 年),最亮時甚至比啟明更亮 [註二],即使在白天仍可用肉眼看見,而且持續長達數星期。著名的梅西爾天體 M1(蟹狀星雲)也是超新星爆炸後的殘骸,自 1054 年的超新星爆發中產生,相關記錄散見史冊,而且至今仍是天文界炙手可熱的研究對象。

蟹狀星雲之心。 圖/NASA and ESA

+1 的部分:極亮超新星

現代觀測技術的進步使超新星事件變得常見,有多部自動望遠鏡凝視著宇宙虛空,在星際間搜尋著超新星的亮光,這類計畫稱為巡天(Survey)計畫。在眾多的觀測數據中,天文學家注意到一類特別明亮的「極亮超新星」(令人不禁想吐槽天文學家如此單純的命名邏輯),這些超新星比一般情況亮了 2 個數量級以上,並且非常罕見。

到 2017 年止,人類僅觀測到約 100 顆極亮超新星。由於數據過少,天文學家對其形成機制的想像可謂瞎子摸象、暫無定論,目前仍歸類為超新星。那麼,極亮超新星究竟是超新星的超級版,抑或是來自不同的形成機制,唯有持續探向更遙遠無垠的古老宇宙,才有機會揭發這個謎團了。

-----廣告,請繼續往下閱讀-----

千級新星──看見宇宙之音

「千級新星」是非常新的天文研究領域,研究過程也極具戲劇性。故事得從科學家研究重力波開始說起。

重力波是重力作用產生的時空漣漪。百年前,愛因斯坦的理論便預測其存在,但重力波非常微弱,連愛因斯坦本人都不相信人類有朝一日能偵測到重力波。直到 2015 年,人類才首次「聽」到兩顆黑洞合併產生的重力波 [註三]。不過,重力波的訊號指向性不佳,難以「聽音辨位」,也就是用重力波訊號回推事件發生地點。若我們能同時「看」到電磁輻射訊號(該事件發出的電磁波),便可蒐集更多更精確的數據,以了解究竟是在宇宙何處發生了什麼事。

令人難過的是,兩顆黑洞合併幾乎不會產生電磁輻射,因此無法用上述的方法獲得更多資訊。

後來,科學家發現,當兩顆中子星合併、或一顆中子星與一顆黑洞合併時,發出的重力波訊號雖較兩顆黑洞合併更弱、也更難偵測,但這兩種事件不只會產生重力波,也會發出電磁輻射,因此是重力波干涉儀的重要偵測目標。2010 年,天文物理學家探討了這兩種合併事件可能的電磁輻射樣態,得出的結論是和新星事件一樣會有劇烈的光度改變,而且最大亮度約是新星的千倍,於是命名為「千級新星(Kilonova)」。

藝術家以動畫展示兩顆中子星通過重力波合併,然後爆炸成千級新星的過程。影/ESO/L. Calçada.

千級新星的發光機制和超新星不同:超新星的光度主要來自爆炸產生的放射性鎳元素衰變,而千級新星則主要來自兩顆中子星,或中子星與黑洞碰撞合併時,大量發生的核反應——「中子捕獲作用」,此類核反應僅在極端物理環境下產生,是形成金、銀、鉛等重元素的重要機制。過去科學家認為宇宙中重元素的生產者是超新星,然而超新星爆炸的觀測數據卻發現,超新星事件發生的中子捕獲作用的「產能」並不足以支撐現有的重金屬比例,因此千級新星便躍上研究舞台,被認為是重元素的主要產地。

-----廣告,請繼續往下閱讀-----

2017 年,LIGO 及 VIRGO 重力波干涉儀共同偵測到人類史上第一場雙中子星合併事件 GW170817。當時,世界各地的望遠鏡幾乎都暫時放下常規任務,爭相投入這場觀測馬拉松。最終的成果令人振奮,不但同時偵測到重力波與相應的電磁波源,分析結果也與千級新星理論預測的訊號相符,這代表我們首次觀測到了千級新星!

重力波 GW170817的可見光訊號。圖/Soares-Santos et al. and DES Collaboration

這場盛會更昭示了「多信使天文學」時代的來臨 [註四]。重力波探測與多波段電磁觀測的結合,替人類的宇宙探索之旅翻開嶄新的一頁。今日,科學家們正期待著下一對共舞的緻密天體搖響精密儀器的銀鈴,讓更多未解之謎得以撥雲見日。

藝術家繪製的 GW170817 雙中子星合併事件想像圖。圖/LIGO-Virgo/Frank Elavsky/Northwestern University

宇宙看似恆常不變,然而在無盡好奇的驅使下,人類以最新科技突破既有的感官極限。我們洞見宇宙深邃瞬變的幽光,聆聽時空悠遠微弱的呢喃。宇宙「新」光的無盡奧秘,還有待來日的勤奮深掘。

註解

註一:客星指新出現的星,意義上包含彗星等在太陽系內遊走的天體,惟不在本文範疇。

註二:金星是地球的夜空中最明亮的星,清晨及黃昏也可見。古時稱金星出現於黃昏為「太白」、「長庚」,出現於清晨為「啟明」。

-----廣告,請繼續往下閱讀-----

註三:人類聽見的聲音主要來自空氣分子的震盪,只要震盪頻率在 20~20000 Hz 的範圍,並且經由介質傳遞使耳膜震動,我們就能聽見。雖然重力波是時空震盪,無法直接以耳朵聽見,但概念上類似,因此常見到科學家將重力波訊號轉換成「音訊」,方便人們感受。

註四:多信使天文學(Multi-messenger astronomy)指利用多種訊號探索宇宙的現象。不同於早期僅以可見光探看宇宙,人類如今能夠探測光子、電磁波、微中子、重力波和宇宙射線等高能帶電粒子。透過這些訊號,可以傳達不同面向的資訊,協助我們拼湊出單一宇宙現象更細緻的原貌。GW170817 事件除了以重力波和電磁輻射觀測,亦有微中子觀測站參與,只是沒有找到相關聯的微中子訊號,因此理論在這方面尚未證實,有待解惑。

延伸閱讀

參考資料

  1. Li, KL., Metzger, B.D., Chomiuk, L. et al. (2017). A nova outburst powered by shocks. Nat Astron 1, 697–702. https://doi.org/10.1038/s41550-017-0222-1
  2. Aydi, E., Sokolovsky, K.V., Chomiuk, L. et al. Direct evidence for shock-powered optical emission in a nova. Nat Astron 4, 776–780 (2020). https://doi.org/10.1038/s41550-020-1070-y
  3. Gal-Yam, A. (2019). The most luminous supernova. Annual Review of Astronomy and Astrophysics, 57, 305–333. https://doi.org/10.1146/annurev-astro-081817-051819
  4. Metzger, B.D., Martínez-Pinedo, G., Darbha, S., Quataert, E., Arcones, A., Kasen, D., Thomas, R., Nugent, P., Panov, I.V., Zinner, N.T.. (2010). Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Monthly Notices of the Royal Astronomical Society, 406(4), 2650–2662. https://doi.org/10.1111/j.1365-2966.2010.16864.x
  5. Smartt, S., Chen, TW., Jerkstrand, A. et al. (2017). A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 55175–79 . https://doi.org/10.1038/nature24303
全國大學天文社聯盟
7 篇文章 ・ 19 位粉絲

0

2
1

文字

分享

0
2
1
恆星將如何死去?——《解密黑洞與人類未來》
天下文化_96
・2022/01/01 ・2403字 ・閱讀時間約 5 分鐘

  • 作者 / 海諾.法爾克 (Heino Falcke)、約格.羅默(Jörg Römer)
  • 譯者 / 姚若潔

發生在天上的死亡事件:超新星爆炸

公元 1054 年,全世界的人都驚訝的仰望天空。有些人可能擔心巨大的災難即將發生。中國北宋的天文學家精確記下這場天空中的驚人事件,記錄到蒼穹中有顆與金星(太白)一樣明亮的「客星」。一名阿拉伯醫生甚至認為這是一顆新星而記錄下來。

左下方的亮點是位在 NGC 4526 星系的一顆「客星」,名為 SN 1994D。圖/WIKIPEDIA by NASA/ESA

在歐洲,雖然並未留下確鑿的目擊紀錄,人們或許也驚訝的看著占據午後天空的「明亮圓盤」。那麼,到底是什麼驚人事件,讓世界各地都有人記下這個現象?

其實是超新星,一種規模巨大的恆星爆炸事件。它發生在我們的銀河系內,距我們六千光年之遙。培布羅長者曾坐著之處的岩石雕刻中,顯示了半圓形的月亮,以紅色畫在黃色的峭壁表面。在半月旁,是一顆清晰可見的巨大星星,圓形四周射出光芒——就像小孩子可能畫出的表現方式。它幾乎和月亮一樣大。公園解說員告訴我們,這就是當時美洲原住民藝術家所描繪的超新星。我們這群天文學家並沒有完全被說服。專家仍在爭論這幅畫到底是不是在描繪 1054 年的超新星爆炸。但我同時也覺得,他們不太可能沒注意到如此不尋常的事件。

太陽將如何死去?

你可以把恆星想像為一個熱氣球。核心的熱讓它保持充氣狀態。一旦燃料用盡,裡面的氣體冷卻下來,壓力降低,氣球便開始扁掉。恆星以類似方式面臨自己的終結。一旦燃料燒完後,恆星便塌縮。不過恆星如何及何時「死去」,要視其質量而定。較輕的恆星(大多數恆星都屬於這類)在經過漫長的一生後消耗殆盡,最後悶燒熄滅。

-----廣告,請繼續往下閱讀-----

我們的太陽擁有一般的壽命。當它開始向內部塌陷時,仍能夠啟動自己的後燃器。在恆星的中央,核融合的灰燼(高熱的氦核)會累積起來。在恆星內爆的內部高壓之下,溫度再次上升,氦會融合為碳,釋放出最後所存的能量,「表皮」因此開始膨脹。就在壽命即將終結之時,太陽會膨脹,變成一顆紅巨星,吞噬掉水星、金星,可能甚至包括地球。

太陽成為紅巨星時會誇張的膨脹。圖為的當前太陽和將來成為紅巨星時的大小比較。圖/WIKIPEDIA by Oona Räisänen

白矮星的誕生

質量大於我們太陽的恆星,在臨終喘息時會向外噴出氣體和電漿。行星狀星雲形成,將死的恆星從內部提供光照,呈現出美妙的形狀與色彩。這個奇景對宇宙來說只是一眨眼的時間;數千年後,這些行星狀星雲便會褪色。行星狀星雲這名稱有點誤導,因為它和行星毫無關係,只是因為在十八世紀發現到時,從當時的望遠鏡中看起來很像是由氣體構成的遠方行星。

在中心位置,是核融合的壓縮灰燼,整個恆星的重量都集中在此。壓力變得如此之大,使得原子逐漸擠在一起,直到摩肩接踵而完全沒有空間留下。然後電子壓力讓這顆星無法繼續塌縮。在恆星核心處繞行原子核的電子稱為「費米子」(fermion)。費米子是物理界的獨行俠,它不會與任何其他費米子同床共枕。當周遭變得太擠時,費米子抗衡了重力帶來的壓力,因而阻止了燃燒殆盡的核心完全崩塌。

如果恆星的外層已經脫去,那麼剩下來的就是一顆體積小、緊緊壓縮、發出亮光的碳核,也就是白矮星(white dwarf),大小相當於地球,但重量相當於太陽。我們的太陽再過數十億年後會變成白矮星,白矮星的組成物只要一茶匙就重達九噸,相當於一輛貨車。白矮星的表面十分酷熱,在很長的時間中會繼續把熱能輻射到太空,直至最後,這顆死星終於變成一顆冰冷、完美球型的碳結晶,成為太空中的巨大鑽石。

-----廣告,請繼續往下閱讀-----
哈伯太空望遠鏡拍攝的天狼星 A 和 B。天狼星 B 是一顆白矮星,位在非常明亮的天狼星 A 左下方。圖/WIKIPEDIA

這個過程有不同的量子力學效應參與,印度物理學家錢卓塞卡(Subrahmanyan Chandrasekhar)曾對此進行計算。1930 年,年僅十九歲的錢卓塞卡搭船前往英格蘭,以便在劍橋繼續他在印度時即已開始的物理學研究。在航程中他的時間很多,因此決定著手計算白矮星可能的最大質量,並得到 1.44 太陽質量的結論。

不過,如果一顆恆星比我們的太陽更大又重上許多,其壓力提高到根本無法承受的程度時,又會發生什麼事?一顆重量比我們太陽大超過八倍的恆星,會點燃更多後燃器而避免塌縮。這顆巨大太陽的核心像洋蔥般,一層又一層燒掉自己。愈接近核心的內層愈熱,在燃燒各層的灰燼時,除了把每一層所儲存的能量釋放出來之外,也形成更大的原子核。氫變成氦,氦變成碳,碳和氦變成氧,氧變成矽,而矽變成鐵。每一個燃燒過程都比前一個更快。氦要燒成碳需要一百萬年,然而全部的矽融合成鐵只需要幾天時間。

然後,事情到此為止!從能量的角度而言,鐵具有自然界中最為緊實的原子核。如果壓力夠大,鐵還能融掉而形成更多新的元素,但這個過程不會再產生更多新能量,反而需要吸收能量。忽然間,增加壓力以便從原子裡擠出更多能量的單純伎倆不再管用。就這樣,原子不再升溫,而是進入降溫過程;壓力不再提高,而是降低。這顆垂垂老矣的星星終於喪失最後的勉強支撐,墮入死亡。幾分鐘之內核心內爆——這顆步入死亡的星星再也無法承受自己的重力。

——本文摘自《解密黑洞與人類未來》/ 海諾.法爾克、約格.羅默,2022 年 1 月,天下文化

-----廣告,請繼續往下閱讀-----
天下文化_96
132 篇文章 ・ 618 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

1
2

文字

分享

0
1
2
星星電力公司:觀察恆星的核融合反應,了解恆星的生老病死——《蔚為奇談!宇宙人的天文百科》
三民書局_96
・2019/12/20 ・3803字 ・閱讀時間約 7 分鐘 ・SR值 546 ・八年級

  • 文/國立清華大學天文研究所教授 潘國全

「天若有情天亦老。」

──李賀,《金銅仙人辭漢歌》

恆星之所以取名為恆星,是因為古時人們相信恆星永恆不變,象徵著完美與無限。然而事實上並沒有什麼東西是永恆不變與完美的,恆星也如同人一般有著生老病死,只是恆星的一生可能橫跨數百萬到數百億年1,遠多於你我的壽命,更長於人類的文明。

太陽是離我們最近的一顆恆星,目前的年紀約為 46 億年,天文學家預測它大概還可以再持續發光 50 億年以上。這麼長的時間,天文學家如何瞭解太陽是怎麼演化的呢?其他的星星與太陽到底有何不同?到底是什麼能量讓太陽能夠發光?為什麼有些星星看起來是不同的顏色?

對於太陽,我們可以假設太陽系的地球與其他行星、小行星是在類似的時間形成,所以研究地球內部的結構、隕石的成分等都可以間接幫助我們瞭解太陽,但這樣的研究方式卻沒辦法運用到其他恆星。

距離我們最近的恆星——太陽(Credits: NASA/SDO)圖/三民提供

-----廣告,請繼續往下閱讀-----

我們可以用統計的方式來瞭解星星。假想你在觀察某一所小學學生的身高分布,雖然學生之間有高矮胖瘦等差異,但在不同年級的教室裡,可能會發現年級與學生的身高呈現正相關分布。

整體來看,愈高年級的學生身高愈高,所以你不必等小學一年級的學生升到六年級,就可以推斷六年級學生的平均身高比一年級學生高。觀察星星也是如此,而星星的命名中也有類似的意味,好比說矮星(dwarf,又有侏儒的意思)與巨星(giant,巨人)。

那星星的學校在哪裡呢?事實上,大部分的星星並不孤單,有很多「雙星」或「三星」的系統,更有一種組成叫做「星團」,是由數百到數百萬顆星星所組成的。星團裡的星星,每顆都有不同的質量,但卻在相近的時間一起誕生,而不同質量的星星有著不同的演化過程和壽命。

顯示恆星演化過程的「赫羅圖」

丹麥天文學家赫茲普龍 (Ejnar Hertzsprung) 與美國天文學家羅素 (Henry N. Russell) 分別提出把恆星的光譜類型與光度2畫在一起的關係圖,後來命名為赫羅圖

天文學家發現這樣的關係圖對瞭解恆星演化非常有幫助:恆星的光譜類型同時代表著恆星的表面等效溫度,恆星愈藍代表溫度愈高(正所謂爐火純青,藍色的火焰比黃色的火焰高溫)。如果我們對不同的星團畫赫羅圖,可以發現不同年齡的恆星在赫羅圖上有不同的分布。

-----廣告,請繼續往下閱讀-----

赫羅圖是恆星的星等(或亮度)對光譜類型(或等效溫度)的關係圖,可以用來顯示恆星演化的過程。(Credits: ESO) 圖/三民提供

天文學家發現大部分的年輕恆星都分布在圖中的對角線—那條稱作主序星 (main sequence stars) 的地帶,而質量愈大的恆星位在愈靠近圖中左上的部分(高亮度、高溫度),且演化得愈快(壽命短);質量愈小的恆星則愈紅、愈暗淡,位在赫羅圖右下方。

究竟是什麼讓太陽可以維持目前的亮度這麼多年呢?太陽的亮度約為 3.8×1026 瓦特,每秒鐘所放出的能量比全人類整年所消耗的能量(約為 2×1013 瓦特)還多。那麼高的能量到底是怎麼來的呢?

當物理學家發現核反應以及愛因斯坦的  \( E= mc^{2} \)  後,馬上就意識到太陽的能量是來自氫的核融合反應,而氫又是宇宙中最常見的一種元素,因此可以推斷恆星最開始的光芒都來自於氫的核融合反應,只是不同質量的恆星因為壓力與溫度不同,氫的核融合有不同的反應速率,導致它們演化的速度不同。

不同元素的核融合所需溫度
反應溫度 (K)
氘核融合 ~ 106
鋰核融合 ~ (2~3)×106
氫核融合 ~ (1~4)×107
氦核融合 ~ (1~2)×108
碳核融合 ~ (6~8)×108
氖核融合 ~ (1.2~1.4)×109
氧核融合 ~ (1.5~2.2)×109
矽核融合 ~ (3~4)×109

而氫燃燒完後,不同質量的恆星也因為重力造成的壓力不同而有完全不同的命運。概略來說,恆星依其質量可以分成三個種類:極低質量恆星低質量恆星,以及大質量恆星

-----廣告,請繼續往下閱讀-----

極低質量恆星

在極低質量恆星之中,質量介於約 10~80 倍木星質量3之間的恆星又稱為棕矮星 (brown dwarf);質量小於這個範圍則稱為次棕矮星 (sub­brown dwarf);稍大一點則稱為紅矮星 (red dwarf)。

太陽與紅矮星、棕矮星、木星之間的比較。圖/wikimedia

與太陽和一般的主序星不同,棕矮星因為重力微弱,核心內部的溫度和壓力不足以點燃氫的核融合反應,因此內部主要是氘在進行核融合反應,只能發出非常微弱的光芒。次棕矮星的質量更小,連氘的核融合反應都無法點燃,有些天文學家甚至還在爭論次棕矮星與行星(譬如木星)之間如何劃分。

紅矮星的質量大約介於 0.08~0.5 倍太陽質量,而且表面溫度低於 4,000 K。紅矮星的質量小,溫度低,暗淡不易觀測,但數量龐大。目前估計銀河系中約有六、七成的星星屬於紅矮星。紅矮星的光和熱主要來自氫融合成氦4

目前恆星演化模型認為紅矮星是完全對流的,也就是核心產生的氦會對流至表面,使星球所有的成分均勻混合,延長反應時間。因此,理論上紅矮星的壽命非常長,目前普遍相信宇宙中所有的紅矮星都還沒有演化到下一個階段。如果紅矮星的氫燃燒完畢,將演化為一種目前仍未觀測到,純為理論預測的恆星—藍矮星 (blue dwarf)。

-----廣告,請繼續往下閱讀-----

低質量恆星

低質量恆星的質量大約介於 0.5~8 倍太陽質量之間。

演化初期,低質量恆星主要是靠氫融合成氦的核反應;質量較小的恆星主要是透過質子—質子連鎖反應;而質量較大的恆星主要則靠碳氮氧融合循環 (CNO cycle) 來產生氦。在核心燃燒氫的這個階段稱為主序星,太陽目前就處在主序星階段,其內部溫度高達攝氏千萬度。

數十億年後,恆星核心內的氫將逐漸用盡,轉變以氦為主,而核心外圍則有一層氫燃燒的球層。此時內部的溫度仍不足以點燃氦的核反應,在赫羅圖上的演化階段從主序星帶慢慢往上方偏移,進入次巨星 (subgiant) 階段,它們與主序星有類似的光譜類型,但較為明亮。

這個階段主要是燃燒氦核外面的氫層。由於恆星內部的核反應停止,核融合產生的能量無法對抗重力的坍縮,因此內部的氦核會漸漸轉變為量子簡併的狀態,核心慢慢縮小,溫度和密度則漸漸增加(溫度約為一億度),但外層反而漸漸冷卻膨脹而轉變為紅巨星 (red giant)。

生生不息的恆星演化生命循環 (Credits: star formation: NASA/JPL­Caltech/UCLA; proto­star: NASA/ESA/the Hubble Heritage Team (STScI/AURA)/IPHAS; sun, red dwarf, supernova explosion & neutron star: NASA; planetary nebula: ESO/VISTA/J. Emerson; red supergiant & black hole: NASA/Ames/STSCl/G. Bacon) 圖/三民提供

-----廣告,請繼續往下閱讀-----

當核心內部的溫度最終達到足以點燃氦的核融合反應,使氦核心不再是簡併狀態而快速膨脹,此即氦閃 (helium flash)。核心的氦透過三氦過程 (triple­alpha process)融合成碳,效率比氫的核反應高非常多。這時核心內部達到新的平衡,在赫羅圖上從紅巨星階段往左邊平行移動,稱為水平分支 (horizontal branch)。

如同氫一般,最終核心的氦也將用盡,進入漸近巨星分支 (asymptotic giant branch),此時恆星內部將再度變回簡併狀態而成為一顆白矮星 (white dwarf),而外層由於劇烈的恆星風不斷將物質吹出,形成行星狀星雲 (planetary nebula)。低質量恆星的重力不足以使內部再度點燃碳的核反應。

大質量恆星

大於 8 倍太陽質量的大質量恆星,由於重力很強大,內部的氫燃燒完就只剩外層在燃燒,其溫度足以點燃氦的核反應,所以不會產生簡併狀態的核心,甚至可以一路燃燒下去,演化為超巨星 (supergiant)。

蟹狀星雲是一顆恆星爆炸粉碎成為超新星之後的殘骸。圖/wikimedia

-----廣告,請繼續往下閱讀-----

演化到最後,恆星內部會形成一個簡併的鐵核心,外圍則如洋蔥般依序圍繞著矽、氧、氖、碳、氦與最外圍的氫。比鐵輕的元素可以透過核融合放出能量,但是鐵非常穩定,如果要融合出超過鐵的元素反而需要給予能量,因此大質量恆星的核融合反應只會達到鐵。

簡併的鐵核是有質量上限的,當重力超過簡併壓力所能負擔的極限,核心會發生坍縮,形成超新星。而在超新星爆炸後,依其質量與內部結構的不同分布可能留下一顆中子星黑洞

總有一天地球會被吞食?

圖/pixabay

不管是低質量恆星產生的行星狀星雲,或是大質量恆星產生的超新星殘骸,最終回歸宇宙中的雲氣會再度形成第二代的恆星,生生不息地循環下去。我們的太陽也註定在約 5 億年後慢慢演化成紅巨星,其體積將會膨脹,除了吞食水星和金星,甚至可能會把地球也吞沒,屆時人類必定要離開地球(如果那時人類還存在)。

-----廣告,請繼續往下閱讀-----

在進入紅巨星的階段之前,太陽演化至次巨星時,強烈的亮度會使地球升溫,溫度就像目前的金星,使地球不適合生物居住。幾億年看似還有好久,我們或許還不需要太在意,但在宇宙的某個角落,或許有某個文明正在經歷不得不離開母星的命運也說不定呢!

註解:

  1. 宇宙目前的壽命也只有約 140 億年。
  2. 光度:luminosity,天體每秒從其表面所輻射出的總能量。
  3. 木星質量約為太陽質量的千分之一或地球質量的 320 倍。
  4. 透過質子—質子連鎖反應,protonproton chain。

——本文摘自泛科學 2019 年 12 月選書《蔚為奇談!宇宙人的天文百科》,2019 年 11 月,三民出版

三民書局_96
18 篇文章 ・ 12 位粉絲
創立於1953年,為了「傳播學術思想,延續文化發展」,60年來默默耕耘著書的園地。從早期的法政大學用書、三民文庫、古籍今注新譯叢書、《大辭典》,到各式英漢字典及兒童、青少年讀物,成立至今已出版了一萬多種優良圖書。不僅讀者佳評如潮,更贏得金鼎獎、小太陽獎、好書大家讀等諸多獎項的肯定。在見證半個世紀的社會與時代變遷後,三民書局已轉型為多元、綜合、全方位的出版機構。