0

0
0

文字

分享

0
0
0

研究學者發展研究宇宙用的新型擴大器

臺北天文館_96
・2012/07/22 ・694字 ・閱讀時間約 1 分鐘 ・SR值 582 ・九年級

-----廣告,請繼續往下閱讀-----

美國航太總署(NASA)噴射推進實驗室(JPL)和加州理工學院(California Institute of Technology,Caltech)的研究學者,最近開發了一款能將電子訊號放大的新型放大器(amplifier),將可適用於恆星、星系、黑洞等各類天體的研究,甚至可探索量子世界、發展量子電腦等,等於重新定義了可測量的最小極限,是個劃時代的發明。

所謂放大器,是將一個原本很微弱的訊號予以增強的設備,在科學測量或電子學等領域應用廣泛。在大多數任務中,現行的放大器就足以應付;但對於那些得嚴格要求的應用範疇,現行的放大器反倒成了限制發展的絆腳石。

這個新型放大器其中一項關鍵特性,就是它融入超導物質(superconductors-material),當溫度降低到某個程度後,可讓電流在沒有電阻的情況下暢流。這些研究學者使用在這個新型放大器中的超導物質是氮化鈦(titanium nitride)和氮化鈮鈦(niobium titanium nitrid)。如右上圖,是利用氮化鈮鈦製作的放大器,為直徑約16mm的雙螺旋型態。

雖然新型放大器的潛在應用範圍極廣,不過這些研究學者開發這套放大器設備的緣由,卻是為了研究宇宙。這個研究團隊建造的是可以增強微波訊號的放大器,未來這個設計其實還可以應用到從無線電波到X射線的各波段天文觀測中。

-----廣告,請繼續往下閱讀-----

雖然很難說未來放大器將會應用到什麼程度,不過能確定的是,最後一定會設計出相當小巧精緻、近乎完美的放大器。而透過這個新型放大器的發展,這個研究團隊展現了未來必定能達成建造完美放大器的可能性。不過,這款新型放大器仍在初期設計製造階段,還需繼續修飾改善,才能達到所謂的「完美」。

資料來源:Researchers Develop New Amp to Study the Universe[2012.07.17]

轉載自台北天文館之網路天文館網站

文章難易度
臺北天文館_96
482 篇文章 ・ 38 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

6
0

文字

分享

0
6
0
想要人手一台互動式穿戴裝置?讓夢想成真的放大器就在這裡!
活躍星系核_96
・2021/02/18 ・4057字 ・閱讀時間約 8 分鐘 ・SR值 595 ・九年級

-----廣告,請繼續往下閱讀-----

文/劉奕志、李君毅、翁佳菱|國⽴臺灣⼤學物理學系電⼦學課程學生

還記得當初我們對 google 眼鏡的想像嗎?只要眨眨眼就能拍照,隨著視線的移轉便能任意地縮放視窗、捲動頁面。但,你曾關注過這些功能背後的技術嗎? 

如何讓科幻電影中酷炫的互動式穿戴裝置成爲現實,一直是科學家的夢想。圖/pexel

互動式穿戴裝置一直以來都是科幻電影中不可或缺的元素之一,而這些裝置只能存在於大螢幕上的原因,就是因為在現實層面上有許多問題還有待克服,除了成本的考量,還有就是對動作的偵測。由於人體的生物電訊號大多極小,為了偵測這些訊號,目前有效的技術基本上都需要搭配一台昂貴且續航力低的偵測裝置才能達成目的。理想的偵測裝置必須能偵測到極微小的動作,因此,偵測裝置最主要的部份便是放大器,但若想實現穿戴式裝置互動裝置的普及,這個放大器最好是低功耗、具有延展性,放大效果好,同時耐用且生產成本低,才能符合我們長時間配戴及使用的需求。 

電子元件中的放大器——電晶體

目前電子元件中的放大器,多半是運用「電晶體」來達到放大效果,而這些「電晶體」,又是從半導體堆疊而來的。

不同導電性質的材料之比較示意圖。圖/維基百科

材料中的電子原本被束縛在價帶中,但如果給電子足夠的能量,它就有機會往上跳到傳導帶,變成可以移動的電子,一般如金屬般的導體,就是價帶跟傳導帶很接近,只要一點能量就可以變成可移動的電子,而絕緣體正好相反,就算給很大的能量,還是沒有幾個電子可以移動。

-----廣告,請繼續往下閱讀-----

半導體正如其名,介於可以導電跟不可以導電之間,我們可藉由調整給予能量的大小,來決定材料現在能不能導電,運用此特行,可以讓半導體成為簡單的自動控制裝置,來控制電路的開、關狀態。

那由半導體組成的電晶體(Transistor)又是怎麼做出放大效果的呢?從字根上來了解 Transistor 這個字,可以發現它是由 trans(改變)跟 resistor(電阻)組成,亦即利用一個額外的接點來控制電晶體內的電阻。以電阻為例,它沒有任何的外接控制點,所以假設有 1 安培的電流從一端流入,另一端就會輸出 1 安培的電流;而電晶體多出了一個接點,倘若在這個接點上施加電壓來「通知」電晶體改變輸出端的電阻,那麼我們就能控制輸出的電流大小,這也就是電晶體作為放大器的原理。

下文提到的薄膜電晶體(Thin Film Transistors, TFT)是電晶體的一種,常用於顯示器中。藉由電流通過與否,間接控制螢幕上每個畫素產生不同的亮度,使液晶顯示器顯示出各種畫面與顏色,但一般的薄膜電晶體難以塑形,因此較難在穿戴式裝置上應用。

輕薄短小又便宜?「有機」或許就是關鍵

有機薄膜電晶體註 1(Organic Thin Film Transistors, OTFT)以具有共軛鍵結註 2 的高分子為主要材料。一般常見的有機高分子材料如塑膠與橡膠之所以為絕緣體,是因為其由碳氫化合物所組成的共價單鍵長鏈分子,並不具備可自由移動的電荷。而具有共軛鍵結導電高分子的主鏈,由交替的單鍵─雙鍵共軛鍵結而成,此時每一個碳原子有一個價電子未配對,這個多出來的電子可以在分子上自由移動,不被鍵結束縛,但這個價電子不易沿著整個長鏈移動,因此還需加以摻雜(doping)—— 即增加帶電載子(carrier,即載有某種物理特性、且可自由移動的粒子)的濃度,則此材料即成為導電體。 

-----廣告,請繼續往下閱讀-----
左為共軛分子 1,3-丁二烯,右為非共軛分子 1,4-戊二烯。 
圖/Tuiuti University of Paraná

與一般的薄膜電晶體比起來,有機薄膜電晶體有以下幾個優勢:低溫製程、製作步驟簡單、成本低廉且容易塑形,但由於有機材料中分子與分子間僅僅透過微弱的吸引力束縛在一起,不同於無機半導體中分子間透過化學鍵確實的連接在一起,此種較弱的分子間之相互作用,使它們易於形成缺陷,使得載子在傳輸時容易被缺陷所捕獲,此時需要施加較大的電壓以提供能量來將其釋放。這個未能解決的起始電壓問題,就是為什麼現今產業多使用無機半導體的原因。 

而今天這組由 Chen Jiang 團隊發現的蕭特基有機薄膜電晶體放大器 (Schottky barrier organic thin-film transistor amplifier circuit, SB-OTFT amplifier circuit),完美的克服了上述的阻礙。 

明明電晶體千百種,為何「它」能勝出?

這組放大器以具有共軛鍵結的高分子材料 C8-BTBT ,作為有機半導體的主要成分,使其可以利用噴墨印刷技術生產(如字面意思可以被「印」出來),製造成本因此較以往常見的薄膜電晶體低上許多,具有大量生產的潛力。而且由於 C8-BTFT 的晶粒(>50μm)相對較大,可有效覆蓋整個通道,大顆晶粒在體積不變的情況下,晶粒數量較少,也可以減少晶粒間的接觸面積,有效覆蓋整個通道並減少晶粒邊界註 4 和堆疊錯誤等晶體缺陷的形成,進而使此有機半導體的初始電壓降低,克服以往多數有機半導體因起始電壓高,所以在搭配電池使用時電力消耗快、續航力較差的問題。

Chen Jiang 團隊開發的蕭特基有機薄膜電晶體放大器示意圖。圖/Chen Jiang et al, 2019

除此之外,由於其材料特性,該放大器還具有高跨導率註 5(38.2 S/A,接近理論極限 ─ 約 38.7 S/A,一般無機電晶體為 20~30 S/A)、極低功耗(<1nW)、具延展性的特質。考慮人體生物電訊號大多十分微弱,這組有機薄膜放大器的特性恰恰符合我們對於生物電訊號偵測的需求,非常適用於在生物醫學、運動科學等相關領域進行監測追蹤。 

-----廣告,請繼續往下閱讀-----

這組放大器在經過三個月的環境暴露測試後,閾值電壓(即起始電壓,Operating voltage)的偏移小於 1mV 且傳導效率的浮動小於 1%,遠低於其他有機薄膜電晶體元件在相同條件下的表現(>100 mV, >20%),意即其具有優異的穩定性,即使在長時間運作下仍能保持原本良好的特性。

此組 SB-OTFT 與其他電晶體最佳表現的性質比較。圖/Chen Jiang et al, 2019

舉例來說,這個放大器可以大大的改善目前偵測人類眼電圖 (electro-oculogram,EOG) 信號的技術,意即利用偵測角膜視網膜電位來追蹤眼動,以上所述的特性改善了現今偵測器體積大、成本高、需求電源高的問題。另外,高放大功率使其有潛力偵測到極微小的波動訊號,讓我們能了解眼睛在面對虛擬環境(如景深效果)時應對的狀況。在建構虛擬實境 (Virtual Reality) 的技術上為非常重要的資訊。

此組 SB-OTFT 偵測眼電訊號示意圖。
此眼電訊號放大前後對照圖。圖/Chen Jiang et al, 2019

有機薄膜電晶體突破對科技的想像

與傳統無機薄膜電晶體相比,有機薄膜電晶體的優勢在於製作程序簡單多樣、成本低。再者,以有機材料製成使它具有更好的柔韌性,因此物件的尺寸能做得更小、更輕,攜帶起來更方便。

在過去的有機薄膜電晶體研究中多追求載子遷移率註 4 電流開關比註 5 等作為數位開關的性質提升。而此研究突破過往的窠臼,開啟了嶄新的研究方向。這組放大器能同時滿足低功耗、高放大功率與高穩定性等理想放大器應具備的性質,不僅如此,它還有優異的環境穩定度能夠大量生產的優勢,有利於應用在生活中,而這都是其他電晶體無法做到的。 

-----廣告,請繼續往下閱讀-----

由於目前有愈來愈多科技以互動式穿戴裝置為主軸,或許有機薄膜電晶體的發展會延續此研究發現更多可能性,使互動式穿戴裝置大量應用在生活中,突破現今對科技的想像。

致謝

本文源自於臺灣大學物理學系電子學的課程報告,感謝朱士維教授與程暐瀅助教的建議與協助。 

註解: 

1. 薄膜電晶體(Thin Film Transistors, TFT):是場效電晶體的種類之一,大略的製作方式是在基板上沉積 各種不同的薄膜,如半導體主動層、介電質和金屬電極層當做通道區。 

2. 共軛鍵結(conjugated bonding):指具有單鍵-雙鍵交替的鍵結方式,其中會有一個 p 軌域重疊,連接其中間的單鍵。它可以讓 π 電子游離通過所有相鄰對齊的 p 軌域。此 π 電子不屬於單鍵或原子,但是屬於一組的原子。最大的共軛體系是在石墨烯、石墨、導電聚合物和奈米碳管中被發現的。 

-----廣告,請繼續往下閱讀-----

3. 跨導率(transconductance efficiency):電晶體中描述跨導與相對應的工作電流比例關係的參數,此數 值越高代表設置到同樣工作環境時,所需要的工作電流越小,並因而減小整體功耗。一般常用的定義方式為 gm/IDS 其中 gm 為跨導、IDS為汲極電流。 

4. 載子遷移率(carrier mobility):指載子受到外在電場的作用下,能移動的多快的指標(常用 cm2⋅V-1⋅s-1 作為單位) 

5. 電流開關比(on/off current ratio):當給予的電壓大於起始電壓時,電晶體為開(on)的狀態,反之則 為關(off)的狀態,開與關兩個狀態的電流比稱為電流開關比,較大的電流開關比代表開關切換速度快,有較明顯的開關器功能。 

參考資料 

  1. Jiang, C., Choi, H. W., Cheng, X., Ma, H., Hasko, D., & Nathan A. (2019) Printed subthreshold organic transistors operating at high gain and ultralow  power. Science, 363(6428), 719–723 (2019) 
  2. Jia, X., Fuentes-Hernandez, C., Wang, C.-Y., Park, Y., & Kippelen B. (2018) Stable organic thin-film transistors. Science Advances, 4(1), eaao1705.
活躍星系核_96
752 篇文章 ・ 120 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia