0

0
0

文字

分享

0
0
0

Olympus 顯微攝影大賽 佳作作品

espa.taipei
・2012/03/22 ・685字 ・閱讀時間約 1 分鐘 ・SR值 450 ・四年級

這張照片來英國鄧迪大學〈Dr. Paul Andrews〉 所拍攝的。照片是腎細胞的有絲分裂。利用物鏡100x+共軛焦顯微鏡+Widefield Illumination and Deconvolution所拍攝。
這張照片來自美國匹茲堡大學〈Mr. Erdrin Azemi-Charley〉 所拍攝的。照片是成球形細胞團,稱作 ( 神經球 )。利用共軛焦顯微鏡所拍攝。
這張照片來自 英國倫敦大學〈Dr. David Becker〉 所拍攝的。照片是雪貂的網膜神經細胞。利用共軛焦顯微鏡所拍攝。
這張照片來自英國倫敦大學〈Dr. David Becker〉所拍攝的。照片為男生的精子看起來怎麼鐘型蟲差不多。利用共軛焦顯微鏡所拍攝。
這張照片來自美國聖地牙哥〈Mr. Eric Bischoff〉所拍攝的。照片是老鼠乳腺毛細管。利用40倍物鏡的相位差顯微鏡所拍攝。
這張照片來自美國耶魯大學〈Mr. Dylan Burnette〉所拍攝的。照片是 Regenerating Neuron 再生神經元,每次看一些神經元細胞的照片看起來都像一幅藝術品,。利用共軛焦顯微鏡所拍攝。
這張照片來自美國耶魯大學〈Mr. Dylan Burnette〉所拍攝的。照片是一種名為 Aplysia californicus Glia-like Cell 海蝸牛細胞。利用共軛焦顯微鏡所拍攝。

資料來源: Congratulations to the winners of the 2011 Olympus BioScapes Digital Imaging Competition!

文章難易度
espa.taipei
12 篇文章 ・ 0 位粉絲
顯微攝影也可以是一門藝術!顯微鏡不是單單的工具而已,其實只要善加利用,也能變成一幅美麗的藝術作品!

0

3
2

文字

分享

0
3
2
精子從哪裡進入卵子會影響胚胎發育?——《生命之舞》
商周出版_96
・2023/10/20 ・2697字 ・閱讀時間約 5 分鐘

當我第一次驚喜瞥見打破對稱性的可能起源時,我驚訝地發現到這段歷程似乎很早就開始了,而這也為我運用綠色螢光蛋白追蹤細胞分化的研究鋪起了大道。卡羅琳娜與我想要進一步探索這個研究發現,所以我們提出了一個有關其終極源頭的簡單問題:精子進入卵子的位置是否對於胚胎一開始失去對稱性有任何影響?在線蟲與青蛙這類動物的胚胎中確實是這樣,但在哺乳動物(例如小鼠)的胚胎中也一樣嗎?

對稱藝術

當我們將生命的起源以動畫演繹出時,常常看到的影像就是精子設法進入沒有任何特徵的圓形卵子上,並融入其中。若情況是這樣的話,就很難看出精子進入卵子的位置是要如何對未來一切發育有所影響。在這個理想化的卵子上,任一處表面都與其他表面沒有任何差異。不過,當然還是存在有個參考指標,那個等同於「這邊是上面」的指標就是:極體。

圖/pexels

極體是從減數分裂的不對稱過程中所產生,細胞「骨架」在這個過程中會聚集以協助細胞進行分裂。這個細胞骨架稱為紡錘體,它會從細胞中心點往細胞邊緣移動,產生出一個大大的卵子與一個小小的極體。我們可以合理認為,紡錘體與染色體的移動可能打破了卵子的對稱性,也造成了擠壓極體的發育。許多人的確注意到極體最終總是會落在受精卵進行分裂的那個平面上。

理查.加德納這位我們之前見過的科學家,發現極體會附著在卵子上,它不只會確立受精卵首次分裂成兩個細胞的那個平面,它還會在幾天後確立出囊胚的對稱軸。這項發現讓我們有所啟發。這真的是因為卵子中的軸向資訊會一直持續到囊胚階段,還是有其他的因素會影響胚胎發育的對稱性?在我們進行科學研究的過程中,我與卡羅琳娜在當下這個時間點想要知道的是,精子進入卵子的位置是否也會影響胚胎發育,並提供第二個定位線索。

卵子上的座標——精子進入的位置會影響胚胎發育嗎?

就像在地表上某個地點跟北極的相對位置,可以定義所謂的經線,我與卡羅琳娜想要知道,精子進入卵子的位置是否也可以提供相對於極體位置的另一位置資訊。若真的是這樣,我們就能更精準確立進行首次分裂的那個平面。這感覺起來很合理,因為極體的形成與精子的進入位置都會重新排列之後會運用在卵子分裂上的細胞骨架。若不是這樣,分裂的那個平面與精子的進入位置之間就只有隨機的關係。

-----廣告,請繼續往下閱讀-----

以現代科技來說,我們很容易就可以解決這個問題。我們可以將這個過程拍成影片,來看看從精子進入卵子後到後續細胞進行分裂的幾天之間究竟發生了什麼事。但在我們開始研究的那個年代,不存在這樣的選項。我們無法拍攝小鼠胚胎從受精開始進入發育的影片,要等到幾天後胚胎進入囊胚階段才行。我們只能想辦法去標記精子進入的位置,以便可以追蹤它與受精卵在數小時後首次分裂的那個平面之間的關係。

圖/pexels

我一開始想著要用某種自然一點的東西,像是胚胎幹細胞這種非常微小的細胞,在卵子受精後馬上附著在精子進入點上,因為那時還可以看到進入點,但最後我有了更簡單的辦法:我們改用肉眼看不見的微小螢光珠。我們成功了,但我很後悔沒有給這些珠子取個像「微球體」這樣酷炫的科學名稱。當然,同領域人士不認同的不僅僅只是這些珠子要怎麼命名,但「珠子」這個名稱有種簡樸感,所以批評者會用這個名稱來貶低我們的研究,這就是我們得要付出的代價。

一開始很容易就能看到精子是從哪裡進入卵子的。它會留下一個名為受精錐(fertilization cone)的小小凸起。受精錐是由卵子的細胞骨架所建構,並由肌動蛋白的纖維所組成,它大約會凸起半個小時。這時間剛好足夠嵌入一至兩個珠子來標記位置。

我們將這些珠子浸到名為植物血凝素(phytohemagglutinin)的蛋白質混合物中,珠子就會具有黏性。植物血凝素常用於讓細胞聚集在一起。因為人的手不夠穩定,所以卡羅琳娜會以一隻機械手臂來拿取具有黏性的珠子,並將珠子放到卵子的表面上,同時還會以另一隻機械手臂牢牢固定住剛受精的卵子。

-----廣告,請繼續往下閱讀-----
圖/pexels

雖然珠子很小,直徑只有 0.0001 至 0.0002 公分,但在紫外線的照射下看起來大多了,亮綠色的點讓我們很容易就可以追蹤它的命運。觀察受精卵的發育時,我們發現珠子最終會來到細胞首次分裂所產生的兩個細胞之間的邊緣,或者是非常接近這個地方。

受精卵的分裂平面真的是由精子決定的嗎?

我們一直都在挑戰我們的思考與發現。上述情況有可能是任何落在卵子表面的珠子都會掉進分裂溝(cleavage furrow)中。所以為了確認,我們進行了一項對照實驗,卡羅琳娜將另一顆類似的珠子隨機放在卵子表面的其他地方。令我們欣慰的是,這顆珠子最終沒有掉進細胞分裂時所產生的分裂溝中。對我們而言,這表示精子進入卵子的位置以某種方式「被記住」了,並且成為受精卵偏好進行分裂的地點。換句話說,若我們是對的,受精卵之所以會在這個平面進行分裂,是因為偏好(biased)而非隨機(randomly)。

我們持續獲得了各種新發現。在胚胎從兩個細胞發育成四個細胞的階段中,帶有精子進入標記的那個細胞,會傾向於先進行分裂。這個細胞的命運之所以會改變,是因為精子帶入的物質滋養了它嗎?受精的三天後,精子進入標記會留置在囊胚兩部位之間的邊緣處,一個部位是含有會形成胚胎本體的胚胎部分,另一個則是胚外部分。

這表示了,兩細胞胚胎內的其中一個細胞較容易發育成胚胎,另一個則傾向於變成胚外部分。我們感到震驚。我們觀察影像好幾個小時,甚至好幾天。我一開始根本不敢相信這些發現,所以我請卡羅琳娜一再重複進行實驗,打破早期對稱性的證據怎麼這麼簡單,會不會太簡單了?

-----廣告,請繼續往下閱讀-----

可以理解地,對此感到懷疑的人士可能會吹毛求疵地表示,決定分裂平面的不是精子進入點,而是將珠子嵌在進入點的這個動作。為了驗證這個可能性,我們進行了許許多多的對照實驗,我之後會提到。我們已經確認過,將珠子放置在受精錐以外的任何一個地方,都不足以決定分裂的平面。但我們還有諸多其他事項要一而再、再而三的確認,因為我們必須很確定。

這張圖片的 alt 屬性值為空,它的檔案名稱為 0823--300.jpg

——本文摘自《生命之舞》,2023 年 9 月,商周出版,未經同意請勿轉載。

0

4
1

文字

分享

0
4
1
神經元如何發展成神經網絡?神經元為「愛」向前的奇妙旅程
研之有物│中央研究院_96
・2023/05/12 ・4787字 ・閱讀時間約 9 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文/歐宇甜
  • 責任編輯/簡克志
  • 美術設計/蔡宛潔

分子生物研究所所長程淮榮與軸突導向研究

在我們大腦裡面,有各式各樣的神經元。神經需要彼此連結才能發揮作用,而神經元的軸突會去連接其他神經元的樹突,軸突跟樹突連在一起時,稱為突觸,神經連結也就此建立。過程說起來簡單,實際很複雜,例如軸突如何知道自己的目的地?軸突有沒有可能接錯對象?找到目標之後,神經元又是如何形成突觸呢?中央研究院「研之有物」專訪院內分子生物研究所所長程淮榮特聘研究員,他從研究多年的「軸突導向」題目出發,深入淺出地和我們解釋了神經元形成連結的過程。

神經需要彼此連結才能發揮作用,突觸是如何形成的呢? 圖/iStock

從神經元到神經網路,一切是如何開始的?

神經細胞又稱為神經元(Neuron),不會單獨存在,必須互相連結才能傳遞各種訊息,例如人腦有各式各樣的神經元,外型都不太一樣。神經元主要結構有細胞體(Cell body)和突起兩部分,細胞體中間是細胞核,突起則有兩種。軸突(Axon)能伸出去以連結其他神經元,將訊息傳遞出去,樹突(Dendrite)能接收其他神經元傳來的訊息,軸突跟樹突連在一起的接觸點稱為突觸(Synapse)。

兩個神經元彼此連結,軸突終點與樹突棘的接觸點為突觸。 圖|研之有物(資料來源/Current Biology

這張圖顯示神經元有不同構造,由左而右為:皮質神經元(Cortex)、小腦神經元(Cerebellum)以及視網膜神經元(Retina)。圖中神經元類型屬於投射神經元,軸突訊號將發送到細胞體之外,把訊息「投射」到遠處的神經元。
圖/Current Biology

和「研之有物」團隊簡介神經元彼此連結時,程淮榮笑著比喻:「我常說這像是神經元的愛情故事,形成突觸好比 Kiss(接吻),有了第一個、第二個連結,逐漸才構成有千萬個連結的神經網路。」

-----廣告,請繼續往下閱讀-----

他接著說,現在很多神經科學家研究的議題是「Connectome」(大腦連結體),這是大腦所有神經元連結的集體名詞。「人類起初只是一顆受精卵,從出生到長大成人,大腦如何形成這麼多而複雜的神經網路?」程淮榮道。

國際科學期刊《自然》2014 年 4 月 10 日刊載的封面,展示老鼠大腦神經的 3D 連結圖像。
圖/Nature

整個神經網路這麼複雜,每個地方的神經元都不一樣,神經元如何伸出軸突和其他神經元的樹突形成連結呢?這個問題呼應了程淮榮過去幾十年的研究議題「軸突導向」(Axon guidance)

畢竟神經連結不是這麼簡單的,軸突有沒有可能找錯對象,找錯時該怎麼辦?找到樹突後,它們是怎樣形成突觸?如果沒有形成突觸,該如何解決?這些過程有哪些因素和分子會產生影響?如果能弄懂一個機制,就能連帶了解成千上萬個案例。

一路往前衝的生長錐

發育中的軸突前端有個部位稱為生長錐(Growth cone),形狀像有多根手指的手掌。所有的神經元剛開始發育時,活潑好動的生長錐會萬箭齊發,四處去尋找該連結的地方。一旦找到樹突並形成突觸,生長錐就會消失。但生長錐怎麼知道它要往哪裡走?程淮榮說,其實是有一些信號在告訴生長錐:「你要右轉,你要左轉」、「你要去這裡,不要去那裡」。

-----廣告,請繼續往下閱讀-----

他接著說,「引導生長錐移動的方式其實只有兩種:來或去。我常用愛情故事來比喻:愛,就是來;恨,就是去。西班牙籍的神經解剖學教父桑地牙哥·拉蒙卡哈(Santiago Ramón Y Cajal)寫過許多書,某次我讀到他書裡寫著:『促進了生長錐的生長和分化……最終建立了那些原生質親吻……這似乎構成了史詩般愛情故事的最終狂喜』,發現我的想法原來跟他一樣,後來就拿來引用。」

神經元的生長錐結構示意圖。 圖/研之有物(資料來源:程淮榮)
在培養皿觀察到往前爬行的生長錐,相當好動。(可設定循環播放觀看) 資料來源:程淮榮

生長錐的愛恨與捨離

軸突的生長錐並非一步到位,需要一些過程,才能找到與之連接的樹突。程淮榮用了一個比喻來解釋這個過程:就像一個人開車去尋找真愛。

假如這個人(也就是生長錐)從臺北出發,最終要到達高雄。但他為什麼不會去東部呢?因為有些東西在引導著他:桃園有個吸引他的戀人。如果沒有這個吸引,他就不會去。

但當生長錐到達桃園後,又不能沉溺於短暫的愛情,否則就會一直停留在那裡。因此,他必須對桃園由愛轉恨、果斷離開,繼續前往新竹。依此類推,生長錐在旅途中會不斷地愛、恨、離開,直到最後在目的地(高雄)找到真愛並組建家庭,與其他神經元的樹突形成突觸。

-----廣告,請繼續往下閱讀-----

「那麼,是什麼分子在吸引生長錐前進呢?當生長錐被吸引到某個地方時,哪些分子會排斥它、讓它轉向或離開,直到最終與樹突連接呢?神經科學家在研究這些過程中涉及的各種機制,也就是所謂的分子和細胞機轉。」程淮榮說道。

在身體不同部位像腦或脊椎,促進或抑制生長錐的分子都不一樣。體內有成千上萬各種分子在調控生長錐的生長,有許多不同的機轉,才能構成如此複雜的神經網路。到底是什麼樣的分子會先分泌出來,讓生長錐受到吸引?然後是哪一個分子會把它推開呢?從愛轉恨的轉折點是什麼?這些就是神經科學家的研究課題與精髓。

程淮榮說,「其實裡面有很多的細節,我可以花幾個小時跟學生講每一段的愛情故事,因為牽涉到不同的分子。如果有任何科學家能把這些愛恨轉折點和機轉都研究清楚的話,論文幾乎都能登上 CNS 期刊」(註:頂級期刊《Cell》、《Nature》和《Science》。)

接著程淮榮在訪談中展示下圖,說明神經元如何找到「真愛」,也就是神經網路形成的分子與細胞機制:

-----廣告,請繼續往下閱讀-----
  1. 啟動:最初一開始,神經元的生長錐往前延伸。
  2. 排斥/吸引:有的分子(桃紅色)會吸引生長錐,有的分子(黑色)則會讓生長錐選擇避開。
  3. 定位/凋亡:生長錐最後會到達目的地(藍色)。右邊虛線(綠色)表示神經元沒有順利形成連結而死去。
  4. 分枝:個體發育是漸進式的,不是瞬間所有東西都長好,有些地方較早成熟,有些地方較慢成熟。有可能剛開始神經元連在一處(藍色),但過一段時間後,神經元有另一處新的目的地(灰色),軸突出現分枝(branching out)。
  5. 修剪:軸突連到新的目的地之後,原本的軸突會消失。
  6. 維持:正確的神經連結建立後,通常就一直維持到個體死亡。
神經元軸突如何找到一生至愛?透過生長錐往前探索的過程中,會受到不同分子的吸引和排斥。剛開始建立神經連結時,軸突也可能出現分枝,轉移到真正目的地。一旦建立起真正連結,就會維持終生。 圖/研之有物(資料來源:程淮榮)

神經系統也跟樹枝一樣,需要修剪不需要的部分

神經元的軸突不只有一根分枝,剛開始可以有很多根,但最後只會留下幾根,其它沒用到的軸突分枝就會修剪掉,或是斷開突觸的連結點,這是神經系統調節的一種方式,稱為剪枝(Pruning)。

程淮榮說,剛開始大腦與神經系統要建立起連結時,這是個浩大的工程,第一步只會大致上讓每個神經元都去到該去的地方,很多連結可能都不是非常精確,或是有許多不必要的連結。因此接下來,要進行修剪。

神經細胞跟其他體細胞不同,神經元有神經電位,訊號會以電的形式傳遞,稱為動作電位或神經脈衝。當神經連結初步連好,這時需要外界的刺激來幫助修正,如果連接到對的地方,神經脈衝會很頻繁;連接到錯的地方,神經脈衝不頻繁。於是接錯與不需要的部分就被剪除,藉此能讓神經連結變得更精確。

就像樹枝需要剪枝一樣,神經系統的連結要長得好,長得準確,必須接收大量外界刺激,把不需要且多餘的部分剪掉,去蕪存菁。 圖/研之有物(資料來源:Bing Image Creator

舉例來說,剛出生的嬰兒視力不佳,是因為神經連結沒有很準確。經過一段時間後,因為接收了大量外界刺激,讓神經連結變精確、發育越成熟,視力就會變好。

-----廣告,請繼續往下閱讀-----

透過外界刺激來修剪神經元,使連結更精確,這段時間稱為關鍵期(critical period)。一旦錯過關鍵期,可能會讓神經系統無法準確建立,就比較難再調整。關鍵期牽涉的很廣,有時候不是單單是指剪枝,而是指突觸的連結增強,因為這表示消息的傳遞越多。在學習語言或專業運動訓練等,也都有類似的發展關鍵期。

並非小孩才有,成年後神經連結仍具可塑性

因為連結可以形成、也可以消失,所以神經連結具有可塑性(neuronal plasticity)。儘管成年後神經連結的速度不及幼年期那麼快,但科學家觀察到成體腦部仍然可能發生新的連結變化。

程淮榮在專訪中提到,以前有個傳統實驗,科學家觀察在猴子大腦皮質與五根手指對應的 1、2、3、4、5 五個區域,先切除第三根手指,過幾個月再觀察,發現控制第三根手指的 3 區域不見了。隨後進行第二個實驗,只讓第二根和第三根手指頭一直重複活動,幾個月後發現控制第二根和第三根手指的 2、3 區域都有變大,證實成體腦部仍有可塑性。

猴子手指運動與相應的大腦皮質區域變化,說明成年腦部具有可塑性。第一個實驗切斷猴子第三指之後,可以看到第三根手指對應的皮質區消失了。第二個實驗只讓猴子第二、第三根手指活動,可以看到第二根手指和第三根手指的對應區域都變大。 圖/研之有物(資料來源:程淮榮)

關於成年後的神經可塑性,程淮榮補充道,「樹突有一個突出部位稱為樹突棘(dendritic spine),是神經元之間形成突觸的主要部位。科學家實驗發現,在成年老鼠腦部仍能觀察到長出新的樹突棘,表示形成新的突觸。當然,越老的老鼠,形成新突觸的情況可能沒那麼好,但這表示動物在成年後神經仍然具一定的可塑性。」

-----廣告,請繼續往下閱讀-----

關於神經系統的建立、神經元的生長與消失,仍有許多未完全解開的機制。程淮榮與神經科學家們仍繼續努力去抽絲剝繭,深入瞭解神經元那一段段如史詩般的愛情故事。

延伸閱讀

研之有物│中央研究院_96
296 篇文章 ・ 3416 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

2

8
5

文字

分享

2
8
5
大腦的運作是中心化還是去中心化?
YTC_96
・2023/04/07 ・3988字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

區塊鏈的核心概念 “去中心化” 是近期熱門討論的議題之一,甚至被認為是人類未來重點的科技發展項目。區塊鏈的底層技術不但可能改變傳統金融的 “中心化” 模式,也是發展元宇宙、數位資產以及非同質化代幣(Non-Fungible Token,簡稱:NFT)的關鍵。

大腦控制著人類七情六慾及吃喝拉撒,由數百億個神經元所組成。如此錯綜複雜的神經網路結構,讓許多人將大腦的神經網路與資訊網路做類比,並模仿生物神經網路來建立更有效率的數學模型。

大腦由數百億個神經元所組成,控制著我們的七情六慾及吃喝拉撒。謝啦,大腦! 圖/GIPHY

同時,為了解大腦真正的運作機制,我們也會借鏡已有的計算模型,試圖透過演算以及推論來得知大腦的未解之謎。區塊鏈的去中心化能分散風險,避免結構受損時的訊息損失,這就好似大腦的可補償性,但是在其他的特性上大腦在運作上究竟是偏向中心化還是去中心化呢?這篇文章我們將討論大腦的網路結構以及運作功能的理論。

大腦作為整體來運作,既非單一中心也非完全去中心化

人類的大腦結構極為複雜,由大約 860 億個神經元組成,電訊號無時無刻在各錯綜複雜連的神經網路中傳遞。

-----廣告,請繼續往下閱讀-----

科學家們藉由觀察及操弄,甚至模擬來推論部分大腦的功能,透過體外細胞或組織的實驗操作(in vitro)、存活個體的生物實驗(in vivo),又或是於電腦中進行的模擬(in silico),希望能解密神經網路的運算原則。可惜至今我們還無法全面的了解大腦是如何處理及儲存環境複雜的訊息,並極有效率地讓我們做出認知思考、情緒表現以及運動反應。

1950 年代的認知革命(cognitive revolution)開始將科學方法導入心理學的研究,並認為大腦的主要工作就是在進行訊息處理,將外界訊息傳換成內在的想法及感受,甚至認為心智是可模組化的[1]。他們認為要了解心智運作,只需要將大腦想像成一台汽車,只要能拆解並了解各零組件功能,就能再重新組裝一部一模一樣的車。

現代實驗心理學之父,認知心理學以及構造主義心理學(structural psychology)的重要奠基者威廉.馮特(Wilhelm Maximilian Wundt)和其學生愛德華.鐵欽納(Edward Bradford Titchener),則認為心智就像是化學一樣,可以解析成單位來研究。

但是,我們大腦的運作並非機械,拆解成小單位反而無法看到其整體是如何運作產生功能。心理學的格式塔學派(Gestalt),也稱為完形心理學,由馬科斯.韋特墨(Max Wertheimer)、沃爾夫岡.苛勒(Wolfgang Köhler)和科特.考夫卡(Kurt Koffka)三位德國心理學家創立,以我們感官的認知經驗作為證據提出大腦的運作原理是整體的看法。

-----廣告,請繼續往下閱讀-----

就如同圖中看似毫無規律的黑點,在格式塔學派的整體性(emergence)的理論中,我們大腦能顯示出一隻大麥町狗在樹旁低頭的影像,但若是我們只擷取整個大麥町的頭的部分圖像給尚未看過原圖的人觀看,幾乎是無法看出該圖是代表一個狗的頭(圖一)。

格式塔學派說明的經典例子。圖中的狗並沒有完整的輪廓,但我們卻能察覺 「狗」做為一個整體並辨認其各身體部位。
圖一/POPULAR SCIENCE
擷取左圖狗頭的部分。若只將此擷取圖給尚未看過原始圖的人看,是很難看出擷取圖代表的意義。圖一/POPULAR SCIENCE

上述關於心智的理論都認為大腦是作為整體來運作,並非單一中心又或是完全去中心化。但大腦在結構上是作為整體運作還是有分工呢?從神經解剖上來看,大腦有功能區位化或類似多中心的特性,大腦皮質部分大致分為前葉(frontal lobe),主要是處理運動、工作記憶的部分;頂葉(parietal lobe)則是負責處理感覺以及注意力;顳葉(temporal lobe)則是聽覺,而枕葉(occipital lobe)則是視覺[2]

雖然這樣的構造看似違背了格式塔學派的看法,不過隨著解剖及記錄技術的進步,發現不同腦區有互相連結且彼此震盪(oscillation),並有利於訊息整合,說明腦區間訊息是流通且會互相影響。譬如前葉和顳葉的 Gamma 頻率神經震盪和語言運動控制有關[3]。此外,異常的腦區間震盪也與精神疾病導致的失常認知功能有關[4][5],也符合大腦整體運作的重要性理論。

神經網路的可能運算特性

大腦透過多感官訊息的運算整合了解世界。舉例來說,在走路時,神經系統整合了視覺輸入產生的光流(optical flow)和身體移動帶來的平衡覺前庭訊號(vestibular signal),藉此幫助我們判斷轉頭以及運動方向。

-----廣告,請繼續往下閱讀-----

近期有一篇神經模擬的研究,則試圖了解去中心化的神經網路在處理多感官整合的可能性。研究團隊嘗試以視覺與平衡覺整合來推論轉頭方向,結果發現去中心化模型能理想地整合不同線索的訊息及推估刺激[6]

但這與區塊鏈的去中心化是相同的嗎?

目前對神經連結的研究,已知大腦內的神經元不是全部都彼此互相連結溝通無阻,這也說明區塊鏈的去中心化在以全腦神經元作為連結單位來看是不存在的。

神經網路的連結原則,被認為可能具有小世界(small world)與無尺度(scale-free)的特性[7]。小世界網路遵循著高集中及相對短連結的特徵,大部分節點並不相連,但卻可以透過少數幾個連結達到,且存在類似中心的樞紐(hub)。

-----廣告,請繼續往下閱讀-----
六度分隔理論(six degrees of separation)認為,世界上任兩個互不相識的陌生人,中間人最多只有 6 個人。 圖一/wikimedia

更白話一點就是,點與點看似距離遙遠,其實距離不遠,並且能透過較短的距離彼此連結,這也就是著名的社會人際的六度分隔理論(six degrees of separation),認為任何兩位陌生人所間隔的人不會超過六位[8]。建立在傳統的小世界網路模型之上,也有人認為大腦遵循階層架構(hierarchical structure),各腦葉中由幾個較小且集中的連結形成,而腦葉間的連結則是較為疏散的連結[9](圖二)。

無尺度網路符合幂率分布(power-law)特性,網路中大部分節點只和很少節點連結,但極少數節點與非常多節點連結[10]。此網路有容錯的特性,不會因部分節點失效而讓整體網路喪失功能。但容錯性卻相對應帶來攻擊脆弱的特性,如果重要的節點被攻擊,則網路將嚴重受損。

如此的網路已不再只有一個中心,廣義來看確實像是去中心化。但網路中卻存有多個中心,也是和區塊鏈資料散佈到所有節點的意義是不同的。以上從神經網路可能的數學模型來看,似乎間接說明大腦的中心化及去中心化特性是存在於不同的觀察尺度。

(a)傳統小世界網路,有著高集中及相對短連結的特性 (b)階層式模組網路,局部連結為傳統小世界但幾個大腦區整體連結是較為疏散的。圖二/Brain Structure&Function

神經元是神經運算的最小單元?

從結構上來看,人類大腦有數百億的神經元,若最小的功能性單元為單一神經元,則我們則需要定義數百億的功能,且若某個神經元死亡,則代表該功能喪失。

-----廣告,請繼續往下閱讀-----

事實上大腦有著很強的可塑性(plasticity)及某程度的抵抗性(resistance),部分神經的受損可以由其他神經互補功能。若功能性單元不是神經元,有可能是腦葉嗎?但腦葉做為功能單元,則又太過廣泛,舉例來說,就算是視覺,又可細分成顏色,深度,明亮度…等等的概念。如此推論下去,很難就功能性單元有明確的定義。

有趣的是,大腦神經紀錄上確實能看到部分神經對特定刺激會同時反應,又或是同時休息的特性,並且腦區與腦區的連結是以神經束的概念傳遞,而不是單一神經的傳遞。這說明了神經迴路的神經元會形成一集團共同處理同一刺激並往下一站傳遞。這些集團們則有很大的可能擁有與區塊鏈相同的特性,代表集團內的神經元們會彼此共享資訊。並且,少數幾個神經元被移除也不影響訊息處理及傳遞。

可惜的是,若要證明此概念,生物實驗上目前有執行上的困難。因為技術上無法在活體上定義神經元尺度的集團位置及集團成員(神經元)。此外,神經元對應的訊息刺激也尚未有定論,並不像區塊鏈本身就是有著明確定義為有交易紀錄的分散式帳本。

大腦神經紀錄上確實能看到部分神經對特定刺激會同時反應、休息的特性。 圖/GIPHY

結論

從巨觀來看,大腦看似只有幾個重要的中心處理特定功能,從介觀來看,中心與各中心是由錯綜複雜的神經網路的連結形成,為了使訊息傳遞有效率,網路可能遵守著小世界網路或是幂率分布特性。

-----廣告,請繼續往下閱讀-----

這樣的連結網路是多中心而不像區塊鏈資料完全透明共享。從微觀來看,由於數個神經元能處理相同刺激並傳遞相同訊息,代表部分神經集團很有可能符合區塊鏈特性,這也解釋為何人類大腦有如此多的神經元。受限於神經集團定義上的困難及進一步驗證此是否符合區塊鏈特性數學上的定義,探索大腦神經網路的特性還需要眾人努力。

參考文獻:

  1. https://en.wikipedia.org/wiki/Cognitive_revolution
  2. https://en.wikipedia.org/wiki/Lobes_of_the_brain
  3. Kingyon J, Behroozmand R, Kelley R, Oya H, Kawasaki H, Narayanan NS, Greenlee JD. High-gamma band fronto-temporal coherence as a measure of functional connectivity in speech motor control. Neuroscience. 2015 Oct 1;305:15-25. doi: 10.1016/j.neuroscience.2015.07.069.
  4. John JP. Fronto-temporal dysfunction in schizophrenia: A selective review. Indian J Psychiatry. 2009 Jul-Sep;51(3):180-90. doi: 10.4103/0019-5545.55084.
  5. Dols A, Krudop W, Möller C, Shulman K, Sajatovic M, Pijnenburg YA. Late life bipolar disorder evolving into frontotemporal dementia mimic. Neuropsychiatr Dis Treat. 2016 Sep 7;12:2207-12. doi: 10.2147/NDT.S99229.
  6. Zhang, W. H., Chen, A., Rasch, M. J. & Wu, S. Decentralized Multisensory Information Integration in Neural Systems. J Neurosci 36, 532-547, doi:10.1523/JNEUROSCI.0578-15.2016 (2016).
  7. Yao Z, Hu B, Xie Y, Moore P, Zheng J. A review of structural and functional brain networks: small world and atlas. Brain Inform. 2015 Mar;2(1):45-52. doi: 10.1007/s40708-015-0009-z. Epub 2015 Feb 14.
  8. https://en.wikipedia.org/wiki/Small-world_experiment
  9. Hilgetag, C. C. & Goulas, A. Is the brain really a small-world network? Brain Struct Funct 221, 2361-2366, doi:10.1007/s00429-015-1035-6 (2016).
  10. https://en.wikipedia.org/wiki/Scale-free_network
所有討論 2
YTC_96
11 篇文章 ・ 18 位粉絲
從大學部到博士班,在神經科學界打滾超過十年,研究過果蠅、小鼠以及大鼠。在美國取得神經科學博士學位之後,決定先沉澱思考未來的下一步。現在於加勒比海擔任志工進行精神健康知識以及大腦科學教育推廣。有任何問題,歡迎來信討論 ytc329@gmail.com。