0

0
0

文字

分享

0
0
0

發明 DOS 作業系統──基道爾誕辰│科學史上的今天:5/19

張瑞棋_96
・2015/05/19 ・1295字 ・閱讀時間約 2 分鐘 ・SR值 478 ・五年級

-----廣告,請繼續往下閱讀-----

微軟在個人電腦產業稱霸已逾三十年,尤其它的作業系統,從早期的 DOS 到近期的 Windows,一直都是唯一的標準配備(除非你改用蘋果電腦)。稍微知道歷史的人都知道,這一切始自於一九八○年代 IBM 要跨入個人電腦市場時,選擇了微軟作為提供作業系統的合作夥伴,才讓微軟這家小公司迅速茁壯,成就帝國霸業。

但很多人並不知道,微軟原本不是 IBM 的首選,而且比爾·蓋茲與創業夥伴根本沒有開發 DOS 作業系統。給了微軟機會的是一位叫基道爾(Gary Kildall, 1942-1994)的人,因為他的一念之間,改變了自己與比爾·蓋茲的未來,也改變了個人電腦產業的未來面貌。

1972 年,取得電腦博士學位的基道爾發現英特爾前一年才推出的微處理器 4004,這是首度將運算功能、記憶體與輸入/輸出介面三者整合在一顆晶片上。基道爾興致高昂地為它寫了程式,並主動向英特爾反應他所發現 4004 的功能侷限。英特爾此時才成立不到五年,與他相談甚歡後乾脆聘請他當顧問,於是 1973 年,他先為英特爾剛推出的八位元處理器 8008 寫出第一個微處理器的高階語言 PL/M(Programming Language for Microcomputers),接著為升級版的8080寫出 CP/M(Control Program for Microcomputers),可以控制IBM剛發明的軟碟機,成為史上第一個磁碟作業系統(Disk Operating System)。

基道爾於 1975 年進一步將 CP/M 發展成可以控制印表機等週邊設備,還具文字編輯與Basic語言編譯器等功能。他詢問英特爾要不要買下他發明的 CP/M,但英特爾認為微處理器將用在家電、鐘錶等動力機械上,完全無法想像會有個人電腦這塊市場,於是予以婉拒,表示 PL/M 已經夠好用了。

-----廣告,請繼續往下閱讀-----

基道爾在友人的建議下,在業餘電腦玩家的雜誌上刊廣告自己賣,沒想到竟然一炮而紅。於是基道爾於1976年辭去教職,創立「數位研究公司(Digital Research, Inc.)」,正式開賣CP/M。為了滿足市面上不同廠牌的磁碟機,基道爾不得不開發出不同版本的CP/M,此時他想到如果讓CP/M架在一個專門控制輸入/輸出的程式(Basic Input/Output System)上面,那就不用修改 CP/M,只須修改 BIOS 就好了。這個設計讓 CP/M更快席捲使用英特爾處理器的電腦市場。

於是當 IBM 在 1980 年急著進入個人電腦市場時,它想到的當然是直接使用英特爾處理器與 CP/M 作業系統。但負責這案子的人先找上當時是 CP/M 經銷商的微軟,比爾·蓋茲才告訴他應該找基道爾。但 IBM 前去拜訪那天,基道爾竟然不在公司,開他的小飛機去了!留下妻子與 IBM 商談。

或許是基道爾認為 IBM 開的條件不夠好,更可能是 IBM 覺得基道爾的無禮缺席代表他很難打交道,總之,IBM 沒有繼續與基道爾協商,而是回頭找比爾·蓋茲;或許是要他幫忙勸說吧?結果比爾·蓋茲告訴IBM他可以如期提供同樣的東西。

原來,有一家西雅圖電腦公司抄襲 CP/M,開發出 Q-DOS 作業系統。比爾·蓋茲知道基道爾沒申請專利,於是與 IBM 談好條件後,以七萬五千美元買下 Q-DOS,改名為 MS-DOS。IBM 出貨的版本則稱為 PC-DOS。微軟從此飛上枝頭變鳳凰。

-----廣告,請繼續往下閱讀-----

就這樣,發明第一個微處理器的高階語言、發明第一個磁碟作業系統、發明第一個 BIOS 的基道爾,就因為一念之間放棄了送上門的機會,他的心血從此被歷史遺棄,他的名字也早就被人們遺忘了。

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 945 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

6
1

文字

分享

0
6
1
ChatGPT 還是 AI 之王嗎?Google Bard AI 與微軟 Bing AI 的終極測試
泛科學院_96
・2023/08/12 ・537字 ・閱讀時間約 1 分鐘

-----廣告,請繼續往下閱讀-----

今天這集影片我們準備拿 ChatGPT、Google Bard AI 跟微軟的 Bing AI 來作一個大亂鬥比賽,我們準備了幾個不同的挑戰看誰最厲害。

因為 Bard 跟 Bing 都是免費提供,為了公平性,我主要會使用免費的 GPT 3.5 來比較,不過我同時會放上 GPT-4 開啟網路瀏覽功能的結果來給各位作參考。

評比的成果我會給一顆星到五顆星來呈現,主要分為四個類別:易用性、實用性、創造性以及回應速度。

看完今天的影片,你會想要使用Bing、Bard還是Chatgpt呢?歡迎在影片下方留下你的看法

-----廣告,請繼續往下閱讀-----

如果這支影片對你有幫助的話,請幫我在影片下方點個喜歡,並且把這支影片分享給需要的朋友,最後別忘了訂閱泛科學院的頻道,我們下支影片再見囉。

更多、更完整的內容,歡迎上泛科學院的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

泛科學院_96
24 篇文章 ・ 33 位粉絲
我是泛科學院的AJ,有15年的軟體測試與電腦教育經驗,善於協助偏鄉NPO提升資訊能力,以Maker角度用發明解決身邊大小問題。與你分享人工智慧相關應用,每週更新兩集,讓我們帶你進入科技與創新的奇妙世界,為未來開啟無限可能!

4

9
5

文字

分享

4
9
5
超乎想像的運算力:量子電腦時代來臨,幾件你需要知道的事
科技大觀園_96
・2021/08/14 ・4039字 ・閱讀時間約 8 分鐘

臺灣大學 IBM 量子電腦中心主任張慶瑞表示,IBM 希望 15 年內讓量子位元數突破千萬,屆時傳統電腦耗費「萬年」才能計算的線性代數難題,量子電腦在數分鐘就可迎刃而解,因此現在密碼學的系統必須調整,立即進入「抗量子」時代。

為什麼「量子電腦」像隻巨獸般無所不能呢?難道它是「超級電腦」的加強版,由更多的位元組成嗎?不是的,傳統電腦和量子電腦是兩種截然不同的資料處理形式。

IBM量子電腦的內部構造,上面的一根根的都是同軸電線。(圖/flickr IBM Q,https://www.flickr.com/photos/ibm_research_zurich/32390815144/in/album-72157663611181258/)
IBM量子電腦的內部構造,上面的一根根的都是同軸電線。(圖/flickr IBM Q,) 

神秘的量子行為,連愛因斯坦都無法接受 

傳統電腦以位元(bit)的形式處理資料,每一個位元會在兩種狀態中切換, 這兩種狀態被標為 0 和 1;量子電腦則用量子位元(qubit)來做, 它可以 0、1 的線性組合的疊加態。 

量子位元在疊加態(superposition)時,張慶瑞主任表示,假如把位元的位置以球體標示,南、北極位置分別代表 0 和 1,傳統電腦的位元只能在兩極之間切換,但若是量子位元疊加時,它能在二維球面上任何位置,不限於南北極。 

-----廣告,請繼續往下閱讀-----
傳統電腦與量子電腦的位元差別。(圖/沈佩泠繪)
傳統電腦與量子電腦的位元差別。(圖/沈佩泠繪) 

量子電腦的具體表現,可以用「翻硬幣」的量子博弈遊戲來想像,一個黑盒子中有一枚硬幣,你跟電腦輪流去黑盒子裡翻硬幣,你可以選擇翻或不翻,你和電腦都不會知道彼此對硬幣做了什麼,數輪下來,打開盒子如果是人頭朝上就是你勝,反之就是電腦勝。

張慶瑞表示,如果是古典博弈,你跟古典電腦的勝率各是一半一半,因為古典行為只有翻或是不翻,位元只能以 0、1 兩種方式呈現;但量子電腦不一樣,它在黑盒子裡可能不直接翻成正或反面,而可能是將硬幣「轉動」起來,而這個量子轉動,不懂量子策略的人無法察覺。最後,只要你一開蓋觀測,硬幣就會變成反面朝上,量子電腦勝率達百分之百。

這聽起來非常不可思議,對吧!連愛因斯坦也難以接受量子力學,他曾說:「是不是只有當你在看它的時候,月亮才在那裡呢?」這個奇怪問題點出「量子行為過程無法被觀測」的神秘性質。沒有人知道在黑盒子裡,量子電腦到底對硬幣做了什麼事情,量子具體處在什麼位置,只要我們一觀測,量子疊加和糾纏等行為便會消失,量子就恢復古典粒子行為。

「要了解這個現象,恐怕要讀個十幾年物理學了。但現在量子電腦都被製造出來,你不如就接受它、用它吧!」張慶瑞笑著說。 

-----廣告,請繼續往下閱讀-----
臺大IBM量子電腦中心主任張慶瑞曾至IBM參訪與量子電腦合照。(圖/張慶瑞提供)
臺大 IBM 量子電腦中心主任張慶瑞曾至 IBM 參訪與量子電腦合照。(圖/張慶瑞提供) 

量子糾纏 帶來雙指數成長的計算能力

量子的神秘力量不只如此,當粒子處於量子狀態時會有糾纏的特性,又稱為「量子糾纏」(quantum entanglement)。如同字面上的意思,「糾纏」指的是數個量子綁在一起成為命運共同體,張慶瑞提到,這就是「你泥中有我,我泥中有你」,彼此的狀態會連動,力量還能夠加乘,同時處理不同於古典電腦的計算。

大家都聽過「摩爾定律」(Moore’s law),指的是積體電路上容納的電晶體數量,每隔兩年便會增長一倍,大致說明電腦運算能力會呈指數型的成長,即 2¹ 、2²、2³ 。不過,張慶瑞表示,纏繞特性會讓量子電腦的計算能力以「雙指數成長」,即 2、2、2,這是今年Google量子人工智慧實驗室主任 Hartmut Neven 所提出的,又稱為 “Neven Law” [註1]

去年世界最快超級電腦 Summit 每秒能夠執行 20 億億次(2*1018)的浮點運算,它的非揮發性記憶體(NVRAM)達 800GB(gigabyte,10億位元組) [註2]。但張慶瑞提到,如果能控制量子彼此糾纏,並經過運算的除錯程序,量子電腦就能以 40 個左右邏輯量子位元,達成「兆」位元(1012)才有的運算能力,目前一般認為一個有除錯功能的邏輯量子位元,可能需要一千到一萬左右的物理量子位元組成。

「這很難做到!」張慶端表示,目前 IBM 開放 5 個量子位元供大眾使用,只有兩位元糾纏而已,臺大與 IBM 合作可使用 20 個量子位元,也沒有全部位元糾纏。今年十月 IBM 53 個量子位元的新機器即將上線,預計有 16 個量子位元可以直接糾纏 [註3] 。 

-----廣告,請繼續往下閱讀-----
圖左上是IBM 20qbits系統,圖下是50qbits系統示意圖,可以發現量子位元沒有全部彼此互聯,圖右上則是量子處理器的封裝照。(圖/flickr IBM Q,https://www.flickr.com/photos/ibm_research_zurich/38270974841/in/album-72157663611181258/)
圖左上是 IBM 20qbits系統,圖下是 50qbits 系統示意圖,可以發現量子位元沒有全部彼此互聯,圖右上則是量子處理器的封裝照。(圖/flickr IBM Q

 張慶端進一步解釋,量子難以糾纏是因為粒子是很難達到量子狀態,即便達到量子狀態,要長時間控制它也不容易,像 IBM 就採超導體材料製造量子位元,並以微波控制位元,但超導體必須在接近絕對零度(-273.15℃)的嚴苛環境下運作,亦有相干狀態壽命短等許多問題待克服,目前各國科學家還在尋求不同方式突破,主要當然政府也砸錢支持才會有突破。

為了維持超導體的低溫,量子電腦下方會裝設稀釋冷凍器。(圖/flickr IBM Q Credit: Graham Carlow,https://www.flickr.com/photos/ibm_research_zurich/26774588908/in/album-72157663611181258/)
為了維持超導體的低溫,量子電腦下方會裝設稀釋冷凍器。(圖/flickr IBM Q Credit: Graham Carlow) 

量子電腦的應用:量子通訊、量子金融  

目前世界上量子電腦商業運轉的進程是 IBM 量子電腦 53 位元,去年(2018)Google 發表 72 位元的量子處理器,但並未提供大眾使用。張慶瑞表示,量子電腦至少要 500 位元以上才能逐漸顯現威力,並進入量子優勢的階段。儘管量子電腦離商用還有段距離,不過現階段量子科技已在量子通訊及軟體應用上百花齊放呢! 

IBM量子電腦實驗室,電腦裝在白色的罩子中受保護。(圖/flickr IBM Q,https://www.flickr.com/photos/ibm_research_zurich/38296273694/in/album-72157663611181258/)
IBM 量子電腦實驗室,電腦裝在白色的罩子中受保護。(圖/flickr IBM Q

張慶瑞提到,糾纏的量子之間,當一方狀態改變,另一方也會跟著變,所以開發量子網路系統就能增加訊息傳遞效率,因為知道一方的內容,就能得知另外一方的訊息。再者因為量子不可測量的性質,如果以量子作為秘密鑰匙,任何嘗試取得密碼的行為,都會造成量子狀態改變,因此可確保通訊無法被竊聽。

軟體開發以及應用部分正是「臺大 IBM 量子電腦中心」主攻的部分,張慶瑞提到今年在科技部支持下與 IBM 合作成立量子電腦中心,提供臺灣學界連接進入 IBM Q 系統的服務平臺。

-----廣告,請繼續往下閱讀-----

目前 IBM 提供 20 個量子位元供臺灣的學術界成員使用,主要著墨的部分有兩類,一是處理基礎物理和化學的計算問題;二則是解決特定問題,尋找最佳解,例如:貨車要跑 100 個地點配送貨品,如何配送最有效率;工廠進出貨如何管理最有效率,金融最佳投資與風險控管等。

「現今 70% 量子電腦相關的新創公司,都只針對一個特定問題來研究與發展量子電腦解決方案。」張慶瑞表示,量子電腦最適合解複雜和大數據的難題,量子人工智慧、量子金融與區塊鏈都是很熱門的題目,

根據 IBM 報告估計,他們期待在 15 年後能進入千萬量子位元時代,也就是有超過 1000 個除錯的邏輯量子位元。屆時不用量子電腦就會喪失競爭力,因此即便現在硬體還不到位,新創公司也要搶奪先機、申請專利。

「我現在常跟大學生開玩笑說,你們及你們的下一代,應該無法脫離量子電腦了!五十歲以上可以不學,但是 20 歲以下必須要立刻開始。」張慶瑞坦言,這兩年大家才驚覺量子電腦的時代即將來臨,但大多並不重視,就如同 1968 年個人電腦剛出現一樣,當時並不知道現在會有人手多機的世界。

-----廣告,請繼續往下閱讀-----
IBM 5位元的量子晶片(圖/flickr IBMQ,https://www.flickr.com/photos/ibm_research_zurich/26093923343/in/album-72157663611181258/  )。
IBM 5 位元的量子晶片(圖/flickr IBMQ )。 

在家就能用量子電腦了!跟上前沿科技的第一步 ,從學寫量子電腦程式開始

IBM 在 2016 年就推出 IBM Q5 五位元量子電腦,供大眾在線上體驗量子電腦,在家就可以在 IBM Q Experience上註冊帳號,雲端連線使用它了!

至今全球約有 18 萬名用戶在 IBM 量子電腦上做超過1千萬量子電腦模擬計算,並發表超過 150 篇量子電腦相關文章,台灣目前則有約 50 名用戶 [註4] 。不過目前它沒有辦法像現在電腦一樣友善,有各種軟體直接幫你解答,你必須要自己寫程式告訴它:問題是什麼及如何解決問題。

不過,學習量子電腦的程式語言並不會太難,所以全球目前有許多聰明的高中生也在使用。張慶瑞表示,只是你要懂一點物理與數學,又有 Python 的程式語言基礎,把一些量子概念像是 Hadamard gate(H gate)等概念加入程式中,努力就可以學會。

臺大 IBM 量子電腦中心不定期開設量子電腦的入門課程,臺大校內也有選修課,每個月巡迴到臺灣各大學舉辦量子電腦課程。目前正預備辦理高中老師的培訓,希望也能在高中推廣量子計算的應用,培育未來的人才。九月底科技部也與量子電腦中心合辦「 量子電腦導航」,內容包括:量子電腦與其計算原理、量子程式教學、量子邏輯閘初用,大家可以至臺大 IBM 量子電腦中心查詢相關活動。

-----廣告,請繼續往下閱讀-----

如果覺得學寫程式太可怕,不妨就下載 IBM 推出的 “Hello Quantum” 的手機遊戲吧!用破關解題的方式,逐步認識量子電腦的運算規則。破關征服它後,說不定你會愛上它。 

臺大IBM量子電腦中心(圖/臺大IBM量子電腦中心提供)
臺大 IBM 量子電腦中心(圖/臺大 IBM 量子電腦中心提供) 
所有討論 4
科技大觀園_96
82 篇文章 ・ 1124 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。