0

5
0

文字

分享

0
5
0

碳14測定法│科學史上的今天:5/30

張瑞棋_96
・2015/05/30 ・957字 ・閱讀時間約 1 分鐘 ・SR值 554 ・八年級

-----廣告,請繼續往下閱讀-----

(本報訊)2011 年底於馬祖亮島島尾I遺址出土的人骨,經碳14 年代測定為距今 8,200 年的人骨遺骸,並命名為「亮島人」1 號。2012 年 7 月間又在同地點發現「亮島人」2 號,測定為距今 7,590 至 7,530 年。

是的,我們常看到考古學家用碳14 測定法判斷出土骨骸或文物的年代。事實上,除了考古學,包括地質學、生物學,乃至鑑定藝術品真偽都可能用到碳14 測定法。這項神通廣大的工具乃起源於美國化學家李比(Willard F. Libby, 1908-1980)於 1947 年 5 月 30 日在《科學》雜誌上所發表的論文〈來自宇宙輻射的放射性碳〉

一般我們所稱的碳元素有 6 個質子與 6 個中子,又稱碳 12;而碳 14 則多了 2 個中子,但它可不是由碳 12 變來的。事實上,地球上所有的碳 14 都是來自於宇宙射線中的中子束與大氣層中的氮原子撞擊後的產物。碳14產生後很快就與大氣中的氧原子結合成二氧化碳,因此大氣中的二氧化碳所含的碳原子除了碳 12,還有少量是由碳 14 組成。

碳12 是極為穩定的原子,但碳14 是種放射性元素,它會自動衰變回氮原子。每個碳14 原子衰變的時間都不一定,但一大堆碳14的平均衰變時間就很固定了;這就像學校裡每個學生的跑步速度都不一樣,但是每一班的平均速度都差不多。平均而言,過了 5,730 年碳14 原子就會有一半衰變成氮原子,這 5,730 年就是碳14 的半衰期。而科學家發現碳14 生成與衰變的速率差不多,所以亙古以來,地球上的碳14 與碳12 都維持一定的比例,大約是 1.3 兆分之一沒有改變。

二氧化碳被植物吸收,其中的碳原子經食物鏈進入動物體內後也是維持這樣的比例不變,直到這生物死亡為止。生物死亡之後,體內的碳12 數量維持不變,但碳14 卻會逐漸衰變而越來越少,因此只要測出骨骸中這兩者的比例,就能反推計算出此生物已經死了多少年。這就是李比提出的碳14 測定法,他也因此獲得 1960 年的諾貝爾化學獎。

-----廣告,請繼續往下閱讀-----

不過碳14 測定法也有其侷限。如前面所說,碳14 的正常比例只有 1.3兆分之一,經過十次半衰期就只剩一千三百兆分之一,這大約就是現代測量儀器的極限了。因此年份在六萬年以下的生物或物體才適用碳14 測定法,超過六萬年以上的就得利用其它半衰期更長的放射性元素了。所以下次你如果看到電視或電影中說某物品經碳14 測定有數十萬年歷史,就可以好好嘲笑它了。

 

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 953 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。

0

8
4

文字

分享

0
8
4
地磁四萬年前曾逆轉,引發了劇烈氣候變化
安比西林_96
・2021/04/07 ・2730字 ・閱讀時間約 5 分鐘 ・SR值 541 ・八年級

-----廣告,請繼續往下閱讀-----

科幻作品中,導致世界毀滅原因的榜單上,總少不了「地磁逆轉」。這樣的情節並不只是科幻的危言聳聽,地球磁場就像地球的 AT 力場,可以阻擋來自太空的高能量粒子長驅直入,保護地球上的生靈。

地層中有些礦物可以記錄地磁方向,過去科學家由此得知地球誕生的這 45 億年以來,早已發生過好幾百次的地磁方向南北倒轉。雖然人類沒有紀錄、世界也沒有因此毀滅,但地磁逆轉對當時的生物而言,依然是一場可怕的大浩劫。

最近一次的地磁逆轉,發生在 42000 年前,新的研究告訴我們,當時還有太陽活動的改變,在這樣的共同影響下,引發一連串如末日電影情節的災難性事件:臭氧層被破壞、雷暴肆虐熱帶地區、太陽風產生壯觀的極光、北極冷空氣吹掃北美、冰蓋與冰川蔓延,造成氣候劇烈變化。

搖擺不定的地球磁極

電腦模擬下,非逆轉時期(左)與逆轉時期(右)的地球磁場示意圖。圖/wikipedia

雖然人類以指南針指引南北,但指南針指向的地磁北極,並非乖乖不變的一個定點。因地核運動的緣故,地磁北極會在地理北極——即地球自轉的軸心附近來回搖擺。地球磁極有時會發生更劇烈的變動,即前面所提的「地磁逆轉」,箇中原因科學家未有定論。  

人類首次發現地磁逆轉,就是前述發生在 42000 年前的「拉尚事件」(Laschamps event),也是被研究得最透徹的地磁逆轉。拉尚事件存在的證據散佈世界各地,最新來自澳洲塔斯馬尼亞一個天然冰河湖的沉積物岩芯。但地磁逆轉的發生,究竟會對地球的氣候與生態造成多大程度的影響,一直是科學上待釐清的疑問。來自澳洲新南威爾斯大學 (University of New South Wales) 與南澳博物館 (South Australian Museum) 的科學團隊最新的研究發現,地磁逆轉對地球帶來的衝擊比過去所想象的來得大,其影響範圍遍佈全球。 

-----廣告,請繼續往下閱讀-----

解密地磁逆轉的羅塞塔石碑——紐西蘭貝殼杉

 世界上的最好木材之一、可以生長逾千年的紐西蘭貝殼杉Agathis australis),又名考裏松(毛利語稱為 Kauri),在紐西蘭北部的泥潭沼澤中沉睡超過四萬年也不會腐朽,成為研究拉尚地磁逆轉事件最佳的實驗材料。

研究人員利用碳 14 定年法,分析紐西蘭貝殼杉年輪中的碳 14 比值,重現過去地球大氣層變化的高解析度時間軸。地球上所有的碳 14,都是大氣層中的氮原子,被宇宙輻射中的中子束撞擊後的產物。地球磁場會使宇宙輻射發生偏折,減少來到大氣層的宇宙輻射。因此磁場減弱時,更多的碳 14 就會誕生。結果顯示,過去研究中磁場强度的最低點、地磁逆轉之時,正好與貝殼杉記錄到的大氣層碳 14 高峰相吻合。這一發現幫助科學家建立更精準的新時間軸,突破過去待確定的疑問。

生長千年、萬年不朽的紐西蘭貝殼杉成為研究地磁逆轉的關鍵實驗材料。

「紐西蘭貝殼杉就像羅塞塔石碑[註],幫助我們將世界各地其他洞穴、冰芯和沼澤地所留存的環境變化記錄,連接起來。」領導這項研究計劃的 Alan Cooper 博士如此説道。

貝殼杉碳 14 的記錄,成為一個很好的校正基準,確定各個關鍵事件的時間點。地球發生的許多重大變化,如熱帶輻合帶(Intertropical Convergence Zone)和盛行西風帶(South Hemisphere Westerlies)在地磁逆轉時,突然同時改向兩極移動,為部分地區如澳洲帶來乾旱,導致一波古代巨獸的滅絕潮。而在北方,廣袤的勞倫斯冰蓋席捲如今的美國西部和加拿大地區,而歐洲的尼安德塔人也走向滅亡。

從紐西蘭 Ngāwhā 取得的古老紐西蘭貝殼杉原木。圖/Nelson Parker

建構氣候模型,還原末日時刻

為探究大大弱化的地球磁場,對大氣的電離作用、化學與動態變化之影響,研究團隊也建構了全球尺度的化學與氣候變化關係之模型,同時調查太陽能量的改變。

-----廣告,請繼續往下閱讀-----

當時地球磁場的强度減弱到今天的 6% 以下,是羅盤也會找不着北的程度。因此近乎失去磁場的地球,就像在充滿危險高能量粒子的太空中衣不蔽體,宇宙輻射可直接到達大氣層。而與此同時,太陽正經歷好幾次的太陽活動極小期(Grand Solar Minimum),儘管總體而言這時期的太陽活動較不頻繁,但也更不穩定,常常噴發巨大的太陽耀斑,使更强大的宇宙射線襲向地球。模型顯示,更禍不單行的是來自太空和太陽耀斑的宇宙射線,穿透大氣層上層使空氣中的分子帶電,造成一系列的化學反應,讓平流層的臭氧也流失慘重。此時期的地球表面,磁場與臭氧層的保護同時被削弱,對生物有害的宇宙輻射與紫外光比以往更強烈。

向宇宙神秘數字 42 致敬的亞當斯事件

模型所模擬的結果,與在各地觀察到自然氣候與環境改變的歷史記錄一致。氣候劇變下的末日,生物曝露在高强度的紫外線中,尼安德塔人和巨獸被無情淘汰,人類的祖先智人則躲入洞穴中。這也能解釋史前洞穴壁畫,為什麼會在四萬年前突然蓬勃出現。

地磁逆轉造成的極端氣候變遷,與太陽活動極小期,都剛好在 42000 年前同時發生。為紀念和宇宙神秘數字 42 的巧合,研究團隊將這段時間稱為「亞當斯事件」(Adams Event),以向提出這個數字的經典科幻作品《銀河便車指南》作者道格拉斯·亞當斯(Douglas Adams)致敬。數字 42 被喻為指向生命、宇宙和一切的終極答案。這真的是巧合嗎?沒有人知道。

有關「亞當斯事件」的有趣小短片

註解

羅塞塔石碑:製作於公元前 196 年,由於刻有古埃及法老王詔書內容的三種不同語言版本(古埃及象形文、埃及草書、古希臘文),讓考古學家得以有機會解讀出失傳千年的埃及象形文字,因此也被喻為破解謎題的關鍵。

-----廣告,請繼續往下閱讀-----

參考資料

  1. Earth’s magnetic field broke down 42,000 years ago and caused massive sudden climate change
  2. Cooper, A., Turney, C. S., Palmer, J., Hogg, A., McGlone, M., Wilmshurst, J., … & Zech, R. (2021). A global environmental crisis 42,000 years ago. Science, 371(6531), 811-818.
  3. Radiocarbon dating considerations

延伸閲讀

  1. 地球磁場即將反轉?
  2. 跨年夜的捷運改變了地球磁場?那真是比萬磁王還要狂啊!
  3. 地球磁場倒轉到底多快?洞穴石筍古地磁紀錄大解密
  4.  地磁逆轉與太陽閃焰殺手
安比西林_96
10 篇文章 ・ 9 位粉絲
本職為生態環境領域的可撥煙酒生。 不定時掉落科普文章。 大家一起嗑科科(❍ᴥ❍ʋ)

0

1
0

文字

分享

0
1
0
放射性廢棄物如何處理?廢爐需要大家共同思考——《福島第一核電廠廢爐全紀錄》
臉譜出版_96
・2019/04/16 ・2117字 ・閱讀時間約 4 分鐘 ・SR值 551 ・八年級

-----廣告,請繼續往下閱讀-----

  • 文/吉川彰浩

廢棄物問題將延續 50 年以上

圖/wikipedia

放射性物質是危險的東西,這是眾所皆知的事,而我們選擇遠離那裡,可以的話,完全不想有任何牽扯,因此對於放射性廢棄物的處理,亦即廢爐一事,只有消極負面的印象而已,這是目前大家都有的感覺吧?

相信也有很多人是因為核電廠事故才這麼想,但若追溯歷史,其實這並不是今天才開始的事。

日本第一座核能發電廠是建於一九六三年十月二十六日、茨城縣東海村的 JPDR(Japan Power Demonstration Reactor)。在這座核電廠開始運轉的同時,如何處理放射性廢棄物的問題也就隨之展開,這可以說是從五十多年前就應該開始思考的問題。

-----廣告,請繼續往下閱讀-----

我們經常聽到放射性廢棄物無法進行任何處理的說法。

放射性物質的性質,就是依照種類的不同,只要經過一段時間(= 半衰期)後,量就會剩下一半,變成不會釋出幅射的穩定狀態,達到「無害化」的結果。

雖說放射性物質具有放著不管就會「無害化」的性質,但有一點需要知道的是,半衰期長短依種類不同而有所差異。舉例而言,碘 131 的半衰期約為 8 天, 銫 137 約為 30 年, 鈽 239 約為 2.41 萬年,鈾 238 約為 45 億年。要等到鈽或鈾完全無害,需要極長的時間。核燃料之所以被說成最麻煩的廢棄物,也是因為它是由半衰期長的鈽與鈾所構成。

鈽的電子殼層。圖/wikipedia

若從無害化是需要時間的角度來看,「高階放射性廢棄物無法進行任何處理」的說法可以說是正確的。不過,「雖然很難達到真正的無害化,但可以設法在盡量接近無害的狀態下進行保管」,而且「正因為是難以處理的東西,所以更要採取避免繼續增加的對策」,這就是目前核電廠在廢棄物處理上的原則。

-----廣告,請繼續往下閱讀-----

無害化狀態下的保管技術已經確立

青森縣六所村有高階放射性廢棄物管理中心與低階放射性廢棄物管理中心這兩個放射性廢棄物的最終處置場。

前者有可以穩定保管用過核燃料的設備,是一種叫玻璃固化體的容器,可於穩定狀態下長時間保管高階輻射廢棄物,貯存量可達二八八〇支玻璃固化體。後者則是將高階放射性廢棄物以外的東西放入大型鋼桶裡保管,貯存量為四十萬個兩百公升的鋼桶,未來預計增加到六十萬個。

或許有人會想,既然已經有最終處置場,技術上又能夠保管,那不就沒有問題了嗎?但是最大的瓶頸是「這邊可以代為貯存,但請先處理成可以被接受的狀態再帶過來」。

各位也是自己做垃圾分類,然後裝到袋子裡拿去丟的吧?這是丟垃圾的人被要求遵守的規定;同理,核電廠也有丟棄放射性廢棄物的規定。如果是用過核燃料的話,就裝在一種叫護箱的容器裡,其他則必須裝在鋼桶裡才能拿去丟棄。

-----廣告,請繼續往下閱讀-----

核廢料桶。圖/wikipedia

簡單講是裝在鋼桶裡送過去,實際上並沒有這麼單純。因為是放射性物質,所以必須在穩定的狀態下運送才行,例如運送高濃度污水時,要分成水與放射性物質,放射性物質還要經過乾燥處理以減少體積(減容化),粉狀物要用水泥或塑膠等固著成穩定的狀態(固化),才能裝入鋼桶裡運送,必須經過這樣的加工處理才行。

此處的問題是加工的難度,當中也有輻射強度高到人類不宜靠近、沒辦法輕易運送的高階放射性廢棄物。因此才會稍微轉換思考方式,採取暫時保管在發電廠內的作法。

1F 廢爐作業所產生的放射性廢棄物之所以一直保管在廠區內,主要原因就是無法加工到得以安全運出廠外。目前也持續在討論廢棄物適合運輸的狀態為何、該帶到哪,又該如何進行保管。

-----廣告,請繼續往下閱讀-----

雖然可能有人會認為,那不是東京電力或核電業界的問題嗎?但考量到半衰期等因素,放射性廢棄物確實也是一個會遺留給下一代的問題。

思考大家都能接受的處理方式

在國外核能相關設施的廢爐用語中,有一個字叫「legacy」,就是「遺產」之意。

正如本文一開始所述,這是一個約從五十年前就開始的問題,令人不禁感嘆我們究竟留下多麼棘手的東西啊,而我們的下一代應該也會有同感吧。

圖/wikimedia

-----廣告,請繼續往下閱讀-----

另外,前文也介紹到青森縣六所村的最終處置場,但六所村的居民們是否樂意在當地見到這些設施呢?

在核電廠事故後展開的除污事業中,除污廢棄物的輻射強度雖然大幅低於福島第一核電廠的廢棄物,但包含最終保管方式在內,也引起眾多討論。若將廢爐定位在放射性廢棄物的處理,並將處分方法也納入考量範圍的話,那對我們而言是「切身相關的問題」。然而,明明是切身相關的問題,我們卻始終避之唯恐不及,同時我們也與廢爐現場保持距離。

解決這個問題所需要的並不是技術,真正需要的應該是由投身廢爐工作的人、生活在周圍的我們、地方政府機構、核能相關管制當局等,所有人共同討論並確立一套大家都能夠接受的處理方法。「大家」一起思考並執行有關廢爐的方法,是我們必須留下的遺產。

 

 

 

 

本文摘自《福島第一核電廠廢爐全紀錄》,臉譜出版,2018 年 9 月出版。

-----廣告,請繼續往下閱讀-----
臉譜出版_96
84 篇文章 ・ 254 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

0

0
0

文字

分享

0
0
0
物理學家發現罕見「超核」的證據 — 一種奇異物質的成份
only-perception
・2012/02/24 ・1782字 ・閱讀時間約 3 分鐘 ・SR值 560 ・八年級

-----廣告,請繼續往下閱讀-----

義大利物理學家發現罕見原子核的首個證據,該原子核不存在於自然界中而且在衰變前的壽命只有 10-10 秒。它是某種類型的超核(hypernucleus),如同所有的原子核,包含中子與質子的各種搭配。但不同於一般原子核,超核至少含有一個超子(hyperon,一種由三個夸克所組成的粒子)、至少包含一個奇夸克(strange quark)。超核被認為形成奇異物質(strange matter)的核心,也許存在於宇宙遙遠的部份,也可能允許物理學家探測原子核的內部。

在這裡所研究的特殊超核稱為「hydrogen six Lambda,6ΛH」,其存在首度於 1963 年被預言。現在,一項發表於最近一期 Physical Review Letters 的研究中,在義大利 Frascati,INFN-LNF,FINUDA 實驗中工作的物理學家,報告發現這種粒子的首例證據。FINUDA 合作計畫對數百萬次事件進行分析,最後證明其中有三次是罕見的超核。

奇特性質

一如其名所指,6ΛH 是某一大類氫原子核,由六種粒子所組成:四個中子,一個質子與一個 Lambda(Λ) 超子。因為一個普通氫核內含一個質子但無中子,而包含一個或更多中子的氫核有時被稱為「重氫」。最常見的重氫類型是氘(deuterium,有一個中子)以及氚(有二個中子)。因為 6ΛH 有四個中子加上一個 L 超子,物理學家稱之為「重超氫(heavy hyperhydrogen)」。

-----廣告,請繼續往下閱讀-----

L 超子,分別由一個上、下與奇夸克組成,做了一件比 6ΛH 更有趣的事:它使它的壽命從 10-22 秒(沒有 L 的 5H 超核核心壽命)增加到 10-10 秒。當科學家首度在 1947 年發現 L 超子時,他們就觀察到類似情況:這種「奇異」物體的壽命比先前的預測還更長。那次觀測導致「奇夸克」存在的想法,認為它具有奇怪的特性導致夸克能活這麼久。

偵測

沒有 L 超子,物理學家不太可能直接觀察到具有四個中子的氫核,因為如此沈重的同位素非常難以製造,而且壽命也很短。另一種超核,4ΛH,具有二個中子而非四個,在類似實驗中比 6ΛH 更易製造,而且已被偵測過許多次。但 6ΛH 的偵測證據則困難許多。由 FINUDA 合作計畫所分析的 2700 萬次碰撞事件,代表大約連續一整年不斷針對一項橫跨數年的實驗進行資料擷取。理論上來說,6ΛH 的形成機率比 4ΛH 至少小 100 倍。

FINUDA 實驗位於 INFN-LNF 的 DAFNE 對狀機二個交互作用點的其中一個。如 Elena Botta(該研究的一位領導合作者)的解釋,DAFNE 製造電子與正電子束。當這些射束幾乎對頭撞上時,它們產生 phi(Φ) 介子(meson),有五成機率會衰變成帶電荷的 K 介子與反 K 介子。

-----廣告,請繼續往下閱讀-----

FINUDA 的交互作用點包含一個八角稜鏡,在側邊上有八個目標。當反 K 介子與八個目標之一當中的鋰原子核交互作用時,可同時產生一個 6ΛH 超核以及一個具有特殊能量的 π+ 介子。科學家們偵測到這種特殊的介子就等同偵測到一種奇異原子核形成的跡象。如 Botta 的解釋,6ΛH 製造涉及一種二階段機制,以便將鋰同位素(6Li)中質子的數量從三個減為一個,並產生氫。

一旦產生了,富含中子的 6ΛH 超核在目標內減慢,並在 10-10 秒後衰變成 π 介子,與一個 6He 核。π 介子亦有特殊能量,且科學家能輕易偵測到它以便賦予這次衰變特徵(signature)。所以 6ΛH 超核的形成與衰變都能藉由搜尋具有這些特殊 π+ 與 π 介子存在的事件而被偵測到。

奇異物質

身為 6ΛH 超核的第一個證據,這些結果能闡明奇異物質。有人提出假說,表示那存在於超稠密中子星的中央。物理學家希望藉由製造奇核系統(strange nuclear systems)以更進一步研究奇異物質。

-----廣告,請繼續往下閱讀-----

“超核可被詮釋為奇異物質的核心,” Botta 表示。”尤其是,製造出包含二個 Λ 粒子之奇核系統的可能性,將允許我們研究奇異粒子之間的交互作用。”

超核也能成為研究原子核結構當前模型的有用工具,在其中,質子與中子被排列成一種穩定的配置。

“相較於一般原子核,超核有個奇夸克這項事實,確實賦予它有趣的特性,因為它允許成份 L 粒子成為一種探針,那能非常深入原子核,以測試賦予原子核意義之單粒子殼層模型(single particle shell model)的敘述,” Botta 說。”在這方面,超核物理的研究讓我們能夠獲得以其他方法無法直接取得的資訊。”

她補充表示,另一種具有大中子對質子比例的超核有可能存在於某種穩定狀態中,即便一般來說,富含中子的原子核在理論上是不穩定的。富含中子的超核似乎會是一種例外,這是因為它們改變原子核的結構並增加其壽命。

-----廣告,請繼續往下閱讀-----

接下來,一場將在 Japan Proton Accelerator Research Complex (J-PARC) 進行的實驗裡,物理學家計畫研究 6ΛH 以及其他四種富含中子的超核,例如鋰 10 Lambda (10ΛLi)。

資料來源:PHYSORG:Physicists discover evidence of rare hypernucleus, a component of strange matter[February 17, 2012]

轉載自only-perception

only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

5
0

文字

分享

0
5
0
碳14測定法│科學史上的今天:5/30
張瑞棋_96
・2015/05/30 ・957字 ・閱讀時間約 1 分鐘 ・SR值 554 ・八年級

-----廣告,請繼續往下閱讀-----

(本報訊)2011 年底於馬祖亮島島尾I遺址出土的人骨,經碳14 年代測定為距今 8,200 年的人骨遺骸,並命名為「亮島人」1 號。2012 年 7 月間又在同地點發現「亮島人」2 號,測定為距今 7,590 至 7,530 年。

是的,我們常看到考古學家用碳14 測定法判斷出土骨骸或文物的年代。事實上,除了考古學,包括地質學、生物學,乃至鑑定藝術品真偽都可能用到碳14 測定法。這項神通廣大的工具乃起源於美國化學家李比(Willard F. Libby, 1908-1980)於 1947 年 5 月 30 日在《科學》雜誌上所發表的論文〈來自宇宙輻射的放射性碳〉

一般我們所稱的碳元素有 6 個質子與 6 個中子,又稱碳 12;而碳 14 則多了 2 個中子,但它可不是由碳 12 變來的。事實上,地球上所有的碳 14 都是來自於宇宙射線中的中子束與大氣層中的氮原子撞擊後的產物。碳14產生後很快就與大氣中的氧原子結合成二氧化碳,因此大氣中的二氧化碳所含的碳原子除了碳 12,還有少量是由碳 14 組成。

碳12 是極為穩定的原子,但碳14 是種放射性元素,它會自動衰變回氮原子。每個碳14 原子衰變的時間都不一定,但一大堆碳14的平均衰變時間就很固定了;這就像學校裡每個學生的跑步速度都不一樣,但是每一班的平均速度都差不多。平均而言,過了 5,730 年碳14 原子就會有一半衰變成氮原子,這 5,730 年就是碳14 的半衰期。而科學家發現碳14 生成與衰變的速率差不多,所以亙古以來,地球上的碳14 與碳12 都維持一定的比例,大約是 1.3 兆分之一沒有改變。

二氧化碳被植物吸收,其中的碳原子經食物鏈進入動物體內後也是維持這樣的比例不變,直到這生物死亡為止。生物死亡之後,體內的碳12 數量維持不變,但碳14 卻會逐漸衰變而越來越少,因此只要測出骨骸中這兩者的比例,就能反推計算出此生物已經死了多少年。這就是李比提出的碳14 測定法,他也因此獲得 1960 年的諾貝爾化學獎。

-----廣告,請繼續往下閱讀-----

不過碳14 測定法也有其侷限。如前面所說,碳14 的正常比例只有 1.3兆分之一,經過十次半衰期就只剩一千三百兆分之一,這大約就是現代測量儀器的極限了。因此年份在六萬年以下的生物或物體才適用碳14 測定法,超過六萬年以上的就得利用其它半衰期更長的放射性元素了。所以下次你如果看到電視或電影中說某物品經碳14 測定有數十萬年歷史,就可以好好嘲笑它了。

 

 

本文同時收錄於《科學史上的今天:歷史的瞬間,改變世界的起點》,由究竟出版社出版。

文章難易度
張瑞棋_96
423 篇文章 ・ 953 位粉絲
1987年清華大學工業工程系畢業,1992年取得美國西北大學工業工程碩士。浮沉科技業近二十載後,退休賦閒在家,當了中年大叔才開始寫作,成為泛科學專欄作者。著有《科學史上的今天》一書;個人臉書粉絲頁《科學棋談》。