0

0
0

文字

分享

0
0
0

TESS 你好!克卜勒謝謝再見!都在尋找系外行星的它們有什麼不同呢?

htlee
・2018/05/01 ・1585字 ・閱讀時間約 3 分鐘 ・SR值 490 ・五年級

TESS 升空示意圖。圖/By NASA [Public domain], via Wikimedia Commons

編按:克卜勒太空望遠鏡燃料即將告罄,美國時間 2018 年 4 月 18 日 SpaceX 發射了「獵鷹 9 號」火箭,將下一代的太空望遠鏡 TESS送入軌道。TESS 上天有什麼任務呢?它和克卜勒又有哪些性能上的差別?讓我們一起瞧瞧吧!

克卜勒(Kepler)太空望遠鏡和 TESS(Transiting Exoplanet Survey Satellite,系外行星凌星搜尋衛星)都是美國航太總署(NASA)的太空望遠鏡,它們的主要目的都是尋找太陽系外的行星,也都使用凌星法(transit method)。

凌星法是是利用系外行星通過我們和它的恆星時,恆星暫時變暗的現象來尋找系外行星。以下圖為例,最左的恆星會出現凌星的現象,也就是恆星的亮度會被行星遮掩,造成恆星亮度稍微變暗。

凌星法。雖然圖中的三顆恆星都有行星繞行,但是從這個角度看,只有最左邊的行星會出現凌星的現象,也就是恆星的亮度會因為行星的遮掩而改變,另外兩顆系外行星不會發生遮掩的現象,所以無法用凌星法偵測出來。 圖/李昫岱繪

以上圖為例,從我們所在的角度上看,雖然上圖中三顆恆星都有行星繞行,卻只有最左的恆星會出現凌星的現象。而另外兩顆恆星中的行星行運軌道並不會遮住恆星,故行星繞恆星運行時,恆星亮度不會被影響,也不會出現凌星的現象。因此,天空中只有一小部分的恆星中的行星可以被凌星法偵測到(圖中最左的恆星),大部份的恆星中即使有行星存在(如圖中央和最右的恆星),仍會因為運行角度的關係而無法用凌星法偵測到它們。

克卜勒和 TESS 有什麼不同呢?

重量

克卜勒太空望遠鏡是 1052 公斤, TESS 太空望遠鏡卻只有 350 公斤,克卜勒的重量大約是 TESS 的三倍。

-----廣告,請繼續往下閱讀-----

主鏡

克卜勒是部單一口徑一公尺的望遠鏡,而 TESS 是由四組相機組成,每部相機的鏡頭是 10 公分口徑。

克卜勒一公尺口徑望遠鏡的視野是 115 平方度(相當於10.7°×10.7°),下圖是克卜勒最早選定的觀測目標,它持續觀測了這個方向長達四年左右。

克卜勒望遠鏡最早的觀測目標位在天鵝座附近。 圖/NASA

而 TESS 的每一部相機的視野皆是 24°×24°,四台相機的視野方向排成一列,組成視野的範圍是 24°× 96°(2300 平方度),所以 TESS 四部相機加起來的視野是克卜勒視野的 20 倍!

TESS 上配備四部用來尋找系外行星的小型相機。圖/NASA

下圖中四塊藍色的部分是 TESS 的四部相機組合成的視野(24°× 96°),TESS 把天空分成南北兩半球,南北半球再各分成 13 個區塊,一個區塊的大小就是 TESS 的視野範圍。每個區塊觀測的時間大約是 27 天,圖中的數字就是 TESS 觀測的各區塊編號。TESS 會花一年的時間觀測北半球;再花一年觀測南半球。也就是說,TESS 的廣視野相機讓它能在兩年的時間中觀測到 85% 的天空。

-----廣告,請繼續往下閱讀-----
藍色的部分是 TESS 每一次觀測的區塊,每個區塊觀測的時間大約是 27 天。TESS 在觀測完第一區塊後,轉移到第二區塊,然後第三區塊,依此類推,整個天空一共分成 26 區塊。圖/NASA

觀測的對象

克卜勒是一部口徑一公尺的望遠鏡,主要的觀測的恆星亮度在 8-16 等星之間。TESS 的四部相機就小多了,口徑只有 10 公分,所以 TESS 的目標是亮於 12 等的恆星,預計觀測的目標大約是 20 萬顆恆星。

科學成就

克卜勒望遠鏡用凌星法發現的系外行星比任何的計畫都還多,目前科學家發現的 3700 多顆已確認系外行星,克卜勒發現的數量就超過 2000 顆!天文學家預估 TESS 可以發現數千顆系外行星。

克卜勒太空望遠鏡。 圖/NASA

克卜勒的燃料已經所剩不多,很快就會無法控制望遠鏡的指向,結束克卜勒任務。感謝克卜勒九年來的努力,讓我們對系外行星的了解往前邁進一大步。現在 TESS 即時接手了搜尋系外行星的工作,接下來就看它的表現了!

本文原刊登於作者部落格屋頂上的天文學家,原文為 克卜勒 vs. TESS

-----廣告,請繼續往下閱讀-----
文章難易度
htlee
19 篇文章 ・ 9 位粉絲
屋頂上的天文學家-李昫岱,中央大學天文所博士,曾經於中央研究院天文所和美國伊利諾大學厄巴納-香檳分校從事研究工作。著有《噢!原來如此 有趣的天文學》、《天文很有事》,翻譯多本國家地理書籍和特刊。 目前在國立中正大學教授「漫遊宇宙101個天體」和「星空探索」兩門通識課。天文跟其他語文一樣,有自己的文法和結構,唯一的不同是天文寫在天上!現在的工作是用科學、藝術和文化的角度,解讀、翻譯和傳授這本無字天書,期望透過淺顯易懂的方式介紹天文的美好!

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
195 篇文章 ・ 299 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

11
2

文字

分享

0
11
2
宇宙到底是什麼樣子?——宇宙觀的發展史(上篇)| 20 世紀前
賴昭正_96
・2023/04/19 ・6261字 ・閱讀時間約 13 分鐘

  • 文/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

根本沒有理由假設世界有一個開始。認為事物必須有開始的想法實際上是由於我們思想的貧乏。
—— Bertrand Russell(1950 年諾貝爾文學獎)

「天上的星星千萬顆,世上的妞兒比星多,啊,傻孩子,想一想,為什麼失眠只為⋯⋯」(註一)不!世上的妞兒不會比星多,為什麼失眠也不是只為「她一個」,而是遐想著天空這麼多的星星是哪裡來的?為什麼不停地對著我咪咪地微笑?⋯⋯沉靜晴朗的夜晚,仰望著天空,有多少人不會為閃耀的星空沈思著迷呢?因此相信人類很早就在思考這個問題:在中國有盤古開天闢地,其身形化為日月星辰、山川河流,逝世時將精靈魂魄變成了人類之傳說。

而古希臘人(公元前 750-650 年) 則認為起初世界處於一種虛無混沌狀態,突然從光中誕生了蓋亞(Gaia,地球母親)以及其「他」具有人性的諸神,在沒有男性幫助的情況下,蓋亞生下了烏拉諾斯(Ouranos,天空),後者使她受精,生出了第一批泰坦(Titan)。泰坦後代普羅米修斯(Prometheus) 用泥塑人,雅典娜(Athena)為泥人注入了生命,宙斯(Zeus) 創造出一個擁有驚人美貌、財富、欺騙心、和撒謊舌頭的女人潘多拉(Pandora),給了她一個盒子,令永遠不要打開,但好奇心最後戰勝了,她終於打開盒子釋放出各種邪惡、瘟疫、悲傷、不幸、和在盒子底部的希望——現今打開「潘多拉盒子」的來源。

1881年,英國畫家勞倫斯.阿爾瑪-塔德瑪爵士(Sir Lawrence Alma-Tadema)的《矛盾的潘朵拉》。圖/Wikipedia

除了神話和傳說外,宗教在宇宙觀的發展上也佔了重要的地位。西方的宗教如基督教主要認為宇宙是一個由超自然力量之神創造出來的,人死後會上永生天堂。而東方的宗教如佛教則認為宇宙是無始無終的,沒有起點或終點,因此無所謂宇宙的起源與創造,人會以不同的面貌和形式,不斷生死輪迴。歐洲宗教在十六世紀前一直認為人與地球在這宇宙中佔了一個特殊的中心地位,因此深深影響了基於證據、推理、和辯論的宇宙觀發展。

中國古代的天文學

中國古代的宇宙觀有蓋天說、宣夜說、渾天說三學派,蓋天說認為「天圓地方」,天覆蓋著地,但由於地是方的,故而有四個角是無法覆蓋的,因此這四個角上有八根柱子支撐著整個天空。宣夜說則認為「日月眾星,自然浮生於虛空之中,其行其止,皆須氣焉」,即整個天體漂浮於氣體之中。渾天說雖然也認為「天圓地方」,但天是一個圓球,而不是蓋天說中的半圓,地球在天之中,類似於雞蛋黃在雞蛋內部一樣。東漢張衡(78-139 年)將「渾天說」發展成為一套系統的理論,並透過其所製作的「渾天儀」來加以演示,使渾天說成了中國宇宙結構的權威理論。渾天說的基本觀點認為日月星辰都佈於一個「天球」之上,不停地運轉著。

-----廣告,請繼續往下閱讀-----
清代的渾天儀。圖/Wikipedia

中國帝王自稱為「天子」,因此天文觀測的目的是為了帝王預測天下的禍福,用以指導治國理政、風水地理、農業民生、中醫人文的;天命如果有所改變,就會通過天象昭示天下。因此雖然中國是世界上最早發明曆法的國家之一,也為我們留下了許多寶貴的觀測資料,如記錄了 1054 年 7 月 4 日金牛座超新星的爆發,但古代的天文是皇權統治的一種工具而已,因此中國的天文學難以在民間發展,也不可能出現以科學為目的的天文研究。

地球中心模型

反觀西方世界,天文學在古典希臘則早已經是數學的一個分支。柏拉圖(Plato,公元前 427-347 年)鼓勵年輕的數學家蛇床子(Eudoxus of Cnidus,公元前 410-347 年)發展天文學體系,於公元前 380 年左右提出第一個以地球為中心的宇宙模型,認為一系列包含恆星、太陽、和月亮的宇宙球體都圍繞地球旋轉。

亞里士多德(Aristotle,公元前 384-322 年)識這些宇宙球體為物理實體,裡面充滿了導致球體移動之神聖和永恆的「以太」(ether)。他將這些球體分為陸地(terrestrial) 和天界 (celestial) 兩個領域。陸地領域包括地球、月球、及它們之間的月下區域,以變化和不完美為其標誌。天界是月球上方的領域,在這裡秩序井然,完美無缺。恆星固定在一個天球上,該天球每 24 小時圍繞地球旋轉一次。

最裡面的球體是地球的「陸地」,最外面的球體是「以太」構成的,包含「天界」。圖/Wikipedia

這個模型在接下來的幾個世紀裡得到了進一步的發展:希臘裔埃及天文學家、數學家、和地理學家托勒密(Claudius Ptolemy, 85-165)仔細研究以前所有天文學家的工作,了解到用肉眼觀察夜空中物體的方法後,透過他出色的數學技能開發出自己的天體運動模型,於公元 150 年出版了一本現在稱為《Almagest》(最偉大)的書籍來闡述其論點。

-----廣告,請繼續往下閱讀-----

他認為地球是一個靜止的球體,位於一個大得多的天球的中心;這個天球攜帶著恆星、行星、太陽、和月亮以完全均勻的速度圍繞地球旋轉,從而導致它們每天的升起和落下。完美的運動應該是圓周運動,因此托勒密認為這些表面上不規則的天體運動實際上是由規則的、均勻的圓周運動組合成的:運動的中心不但偏離了地球,而且還沿著主要圓形軌道上的點依較小的「本輪」圓圈(epicenter)移動。托勒密在該書目錄後留言謂:

我知道我天生必死,轉瞬即逝; 但當我隨心所欲地描繪天體的曲折軌跡時,我的腳不再接觸大地,而是站在宙斯面前,盡情享受神的美味。

此後的 1500 年,托勒密書中的表常被用來預測天體在夜空中的位置;而其以地球為中心的宇宙觀也幾乎統領了以後 2000 年的天文物理發展!

太陽中心模型

1543 年,波蘭哥白尼(Nicolas Copernicus,1473-1543)在德國紐倫堡出版《De revolutionibus orbium coelestium》 (論天體運轉,註二) 一書,提出日心系統,謂地球不在宇宙中心之特別位置,而是與其他行星一起在圍繞太陽的圓形軌道上運動。不幸的是它表面上不規則的天體運動之複雜並不亞於托勒密地心系統;還有,如果地球在動,為什麼星星總是在同一個地方出現——除非它們離地球很遠(註三)?因此該書出版後從未獲得廣泛支持。儘管如此,在日心系統裡,行星繞日具有地心系統所沒有的周期性

哥白尼的宇宙觀,中心為太陽。圖/Wikipedia

十七世紀初,在新發明之望遠鏡的幫助下,意大利天文、數學、哲學家伽利略(Galileo Galilei,1564-1642)發現了圍繞木星運行的衛星,終於對地球位於宇宙中心的觀念造成致命的打擊:如果衛星可以繞另一顆行星運行,為什麼行星不能繞太陽運行?伽利略因之慢慢地深相地球繞日說,但被羅馬教會禁止「堅持或捍衛」哥白尼理論。晚年於 1630 年出版《Dialogo sopra i due massimi sistemi del mondo, tolemaico e copernicano》(關於兩大世界體系——托勒密和哥白尼——的對話), 在最後一章裡用潮汐現象來證明地球是在動,不是靜止地在宇宙中心(註四)。

-----廣告,請繼續往下閱讀-----

大約就在那個時候,德國數學、天文學家開普勒(Johannes Kepler 1571-1630)「盜取」導師丹麥天文學家布拉赫(Tycho Brahe,1546-1601)的豐富實驗資料構建了日心的定量模型,在 1618 年至 1621 年期間出版(立刻成為天主教會禁書的)《Epitome Astronomiae Copernicanae》(哥白尼天文學概要),提出描述行星體如何繞太陽運行的(開普勒)三定律:(1)行星以太陽為焦點在橢圓軌道上運動,(2)無論它在其軌道上的哪個位置,行星在相同的時間內覆蓋相同的空間區域,及(3)行星的軌道周期與其軌道的大小(半長軸)成正比。

開普勒終於解開行星之謎:行星以橢圓形——不是完美的圓形——圍繞太陽運轉。開普勒第三定律謂:行星與太陽的距離與其繞太陽公轉所需的時間存在精確的數學關係。這條定律激發了牛頓(Isaac Newton,1643-1727)的靈感,證明橢圓運動可以用引力與距離的平方反比定律來解釋。

平方反比定律

人類事實上好像很早就注意到了所有物質都互相作用,例如亞里士多德認為物體由於其內在的引力(沉重)而趨向一個點,伽利略則注意到物體被「拉」向地球中心。英國博學士胡克(Robert Hooke,1635-1703)在 1670 年的格雷沙姆演講 (Gresham lecture) 中謂萬有引力適用於「所有天體」,並添加了萬有引力隨距離減小的原理,及在沒有任何這種動力的情況下,物體會直線運動。到 1679 年,胡克認為萬有引力具有「距離平方反比」依賴性(註五),並在給牛頓的一封信中傳達了這一點:「我(胡克)的假設是引力總是與距中心距離成雙倍比例。」

牛頓因為害怕其他科學家和數學家竊取了他的想法,喜歡把他的工作隱藏起來、不發表;因此直到 44 歲才在英國天文學家哈雷(Edmond Halley)說服下,寫了一篇關於他的新物理學及應用在天文學的完整論述;一年多後(1687 年),發表了後來成為物理經典的《Philosophiae Naturalis Principia Mathematica》(自然哲學數學原理)或簡稱為《Principia》(原理)。

-----廣告,請繼續往下閱讀-----

儘管牛頓在《原理》中承認胡克曾經提出太陽系中的平方反比定律,但胡克仍然對牛頓聲稱「發明」了這一定律感到不滿。胡克是一位才華橫溢、但是又駝背又矮的科學家:發現彈性定律(胡克定律)、發現有機體基本單位的「細胞」、發明顯微鏡(使他成為細胞理論的早期支持者)。 當胡克要求牛頓承認他已經預料到後者在陽光中顏色的一些研究結果時,牛頓寫了一封諷刺的拒絕信,影射了胡克的小身材謂:「如果我看得更遠,那是因為站在巨人的肩膀上」(事實上,牛頓的許多創見都不是站在巨人之肩膀上的——被譽為是有史以來最偉大的物理學家,不是沒有道理的)。

胡克透過顯微鏡觀察、繪製的細胞壁。圖/Wikipedia

自然哲學數學原理

牛頓在《自然哲學數學原理》裡用同一個定律解釋了一系列以前不相關的現象:太陽-行星運動、行星-衛星運動、軌道物體、拋射體、鐘擺、地球附近的自由落體、彗星的偏心軌道、潮汐變化、以及地球軸的進動等等,具體地證明了「萬有引力」定律:「⋯⋯所有物質吸引所有其它物質的力與它們質量的乘積成正比,與它們之間距離的平方成反比」。這項工作使牛頓成為科學研究的國際領導者,「自然哲學數學原理」被公認為有史以來最偉大的科學著作。

但除了受過幾何學訓練的數學家外,《原理》事實上是一本非常難以理解的書,更糟的是:裡面充滿了矛盾和不一致,而且還點綴著一些令人毛骨悚然的錯誤(一些錯誤是計算和演示中的徹底錯誤,其它則是邏輯上的空白:沒有證明、只是猜測)。在牛頓時代,很少有人能讀懂它,而今天幾乎沒有人嘗試過。牛頓任教之劍橋大學的學生曾這樣諷刺:「有一個人寫了一本他和任何人都無法理解的書」。

《原理》在那個時代還有一個很大的邏輯問題:那時的物理學家認為世界是一部大機械,作用是必須透過物質撞擊或擠壓物質的接觸來達成的;從遠處發出穿過虛空的無形作用力量是魔法、神秘的、非科學的!為了阻止不可避免的批評和挑釁,牛頓先下手為強,在《原理》一書謂:

-----廣告,請繼續往下閱讀-----

「我已經用重力解釋了天空和海洋的現象,但我還沒有為重力提出一個原因。 ⋯⋯我還不能推斷⋯⋯這些重力特性的原因。我不需要假設,因為任何不是從現像中推導出來的東西都必須被稱為假設;而假設——無論是形而上學的、還是物理的、基於神秘特性的、或機械的⎯在實驗哲學中都沒有地位⋯⋯。在本哲學中,特定的命題是從現像中推斷出來的,然後通過歸納來概括。」

所以重力不是機械的、不是神秘的、不是假設;牛頓用數學及結果證明了這一點:「重力確實存在,並根據我們制定的定律起了作用,足以解釋天體和海洋的所有運動」,因此即使它的本質不能被理解,但我們不能否認它。牛頓認為這就「夠了」。

牛頓的著作《原理》被其任教之劍橋大學的學生諷刺為一本「任何人都無法理解的書」。圖/Wikipedia

靜態的宇宙

當牛頓抬頭仰望月亮、太陽、和行星以外的天空時,他沒有發現任何物體的運動,因此宇宙應該是靜止的。而如果萬有引力可以用在所有的天體上,科學家再沒有任何理由認為人類很特別,我們所處在的地方在宇宙中佔了一個很獨特的地位。這在現代物理宇宙學中被稱為「宇宙學原理(Cosmology principle)」的概念,認為這些力會在整個宇宙中均勻地作用,因此從足夠大的尺度上觀察時,宇宙中物質的空間分佈應該是均勻的、沒有方向性的。同樣地,我們現在所處在的時刻也沒理由是個很特殊的時刻。顯然地,宇宙永遠就是那樣地存在,它沒有開始,也不會有終結—因為如果有開始,那顯然就應有創造者,這不是太宗教了嗎?

牛頓的引力理論實際上需要一個持續的奇蹟來防止太陽和恆星被拉到一起。在 1666 年至 1668 年之間之手稿《De Gravitatione》 (引力)中,牛頓闡述對空間和宇宙的看法:一種「無限而永恆」的神力與空間共存,它「向各個方向無限延伸」。牛頓設想了一個無限大的宇宙,上帝在其中將星星放置在正確的距離上,因此它們的吸引力抵消了,就像平衡針在它們的點上一樣精確。所以宇宙可以保持靜態,不會崩潰到無任何一點(無限大的宇宙沒有中心點)。

有限的宇宙

但是此一充滿著星球的無限宇宙在羅輯上是有幾個很嚴重的問題。例如雖然兩物體間的作用力與距離的平方成反比(收斂系列),但作用的星球數卻是與距離的平方成正比,正好抵消了前者的效應;因此,

-----廣告,請繼續往下閱讀-----

(1)宇宙中的任何一點均應感受到無限大、往四面八方外拉的重力,所以物體不可能存在的!

(2)宇宙中的任何一點均應看到無限多的星光,所以夜晚的天空不應是黑暗的(註六)。

在你心中宇宙長什麼樣子呢? 圖/Pixabay

事實上亞里士多德早就回答了這個問題:物質宇宙在空間上一定是有限的,因為如果恆星延伸到無限遠,它們就無法在 24 小時內繞地球旋轉一圈。1610 年,開普勒也提出既然夜晚的天空是黑暗的,所以宇宙中的恆星數量必須是有限的!這有限宇宙的觀點一直到二十世紀初期還是被歐洲宗教及大部分科學家所接受(註三),造成了愛因斯坦犯下他一生最大的錯誤(詳見愛因斯坦的最大錯誤——宇宙論常數)。

如何解決牛頓之無限宇宙論與宗教之有限宇宙論間的衝突呢?請待下回分解吧。

註解

  • 註一:高山(作曲沈炳光之夫人黄任芳?):《牧童情歌》。
  • 註二:該書非常複雜難懂,科學歷史學家稱它為一本沒有人讀的書。
  • 註三:Giodano Bruno(1548-1600),意大利哲學家、天文學家、數學家、和神秘學家;因為堅持非正統的想法——包括宇宙是無邊緣的,恆星是離地球很遠的太陽、有它們自己在上面可能存在生命的行星,而付出被羅馬天主教酷刑,在火刑柱上燒死的代價——為一有名的宗教迫害案件例。
  • 註四:晚年被羅馬天主教強迫收回(在審判庭上寫了悔過書),因此不像註三的 Bruno,只被軟禁在家到逝世。說來有點可笑,伽利略之「證明」地球在動的理論完全是錯誤的:例如潮汐每天應該出現兩次,但他的證明只出現一次而已。但伽利略發現相對論原理,正確地解釋了為什麼我們沒感覺地球在動。
  • 註五:引力與距離的平方反比定律最早由布利亞爾杜斯(Ismael Bullialdus)於 1645 年提出;但他不但不接受開普勒的第二和第三定律,也認為太陽的力量在近日點是排斥的。
  • 註六:為紀念十九世紀的德國天文學家歐博耳(Heinrich Olbers, 1758-1840) 在這方面的深入研究,現在被稱為「歐博耳悖論(Olbers paradox)」 。
賴昭正_96
41 篇文章 ・ 49 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

3
2

文字

分享

0
3
2
在紛亂、窮苦的人間,三本書,讓克卜勒成為「星空的立法者」(下)
活躍星系核_96
・2020/11/08 ・2606字 ・閱讀時間約 5 分鐘 ・SR值 524 ・七年級

-----廣告,請繼續往下閱讀-----

在上一篇中,我們看到克卜勒為哥白尼的日心說挺身而出,並透過《宇宙的秘密》、《新天文學》兩本書奠定了今日克卜勒第一、第二定律的基礎,接下來,我們即將進入克卜勒的另外一本重要著作:《世界的和諧》。

在發行《新天文學》後,克卜勒擁有全歐洲最精準的行星預測方法,他開始發行自己出版的預測年曆,當作一部分多出來的收入,他希望自己以後能夠不依靠國王的經費,隨心所欲的出書。

此時,是他天文研究的巔峰、人生的最低谷

同時,有鑑於《新天文學》中太多數學論證,不大容易讓學生理解預測行星的方法,克卜勒開始著手撰寫了天文教科書《哥白尼天文學概要》(Epitome Astronomiae Copernicanae),這本書將成為 17 世紀所有天文學家必讀的經典。

克卜勒的著作,《哥白尼天文學概要》。圖/wikipedia

克卜勒的天文研究雖然來到了巔峰時期,但他的現實生活並不順遂,第一任妻子和三個兒女的接續病逝,他所居住的地區也開始瀰漫著宗教紛爭,正一步步走向無法挽回的「三十年戰爭」。

-----廣告,請繼續往下閱讀-----

1618 年初,克卜勒原本打算繼續撰寫第谷未完成的「魯道夫星表」,但心力憔悴的他希望從另一個新研究中尋找到心靈慰藉,於是他寫信告訴朋友:「我暫緩了魯道夫星表的工作,並且開始將我的心力投入在研究『和諧』」。

低潮中的慰藉,研究「和諧」與天體音樂

什麼是「和諧 (harmony)」?和諧的概念源自於人類觀察大自然的現象,發現大自然存在著某種特殊的數學比例。

在西元前 600 年,希臘數學家畢達哥拉斯發現,撥動特定比例的弦長能夠產生特定的音高,畢達哥拉斯也將音樂上的「和諧」推廣到行星運動上,行星和地球的距離每繞行一個周期都會伴隨著固定的比例變化,就像是行星擁有自己的旋律、特定的音階,這種想法被稱之為「天體音樂 (music of the spheres) 」。 

克卜勒希望將《宇宙的秘密》的幾何概念和《新天文學》的物理概念推廣到「天體音樂」的概念中。

-----廣告,請繼續往下閱讀-----
克卜勒《世界的和諧》一書的內頁。圖/wikimedia

現在,讓我們回顧一下克卜勒前兩本重要著作,《宇宙的秘密》、《新天文學》。

在《宇宙的秘密》中,克卜勒認為「上帝是用幾何當作建材搭建宇宙」 ,如今他將自己的正多面體理論延伸結合「天體音樂」,試圖用五種正多面體當作基底來解釋各個行星的旋律。

在《新天文學》中,克卜勒寫出了單一行星:火星的橢圓軌跡,他了解到行星的離心率造就了行星忽快忽慢的現象,在經過幾年的套用後,克卜勒了解到每個行星的離心率都不相同。

此後,克卜勒開始著手繼續研究哥白尼概念中提到的「準則」:行星週期和行星跟太陽距離的關係。

-----廣告,請繼續往下閱讀-----

《世界的和諧》:週期定律的現世

克卜勒和畢達哥拉斯不同,他對於數值特殊的比例不感興趣,他想要知道的是週期和平均距離精確的數學關係,在他擁有六個行星的完整軌跡的情況下,克卜勒能夠將所有資料攤在一起,花點時間和心思仔細查看它們之間的關聯性。

1618 年的 5 月,克卜勒找到了他渴求的數學關係式:週期平方和行星半長軸的三次方成正比關係,這就是克卜勒的第三定律「週期定律」,是牛頓寫出萬有引力定律的基礎之一。

週期定律中,克卜勒認為「行星週期的平方」與「行星軌道半長軸 (a) 的立方」成正比。圖/wikipedia

1619年,克卜勒出版了《世界的和諧》,結束了他長達 20 幾年的解密日心說的旅程,此時,克卜勒再也都止不住他的狂喜了,他在《世界的和諧》中的最後一章寫下:

「我已經擲下了骰子,也寫好了書,不管你是同輩還是前輩,這並不重要。既然上帝等待了祂的研究者足足六千年,我大可等待一百年後的讀者。」

1627 年,克卜勒出版了「魯道夫星表」,結合了第谷的完整觀測資料加上克卜勒的預測模型,成了當時資料最完整最精準的星表。

-----廣告,請繼續往下閱讀-----

科學史上第一位「天文物理學家」

在一個世紀後,牛頓運用自己獨創的萬有引力和微積分,重新證明了克卜勒三大定律,利用漂亮的數學工具解釋了克卜勒多年來的努力,問到克卜勒的成就,牛頓只簡單的評論:「他(克卜勒)當然是用「猜」的,他知道軌跡非圓是卵形,於是他就猜會是橢圓。」

或許我們不該懷疑克卜勒是否猜出橢圓,而是要詢問為何只有克卜勒能夠發現橢圓?

因為他是第一個將「物理」導入天文學的天文學家,他不聽信老師馬斯特林 (Maestlin)「不該把物理學引入天文學」的勸言,堅持使用具有物理意義的「距離規則」來思考天文,有了根據行星運動建立的基礎物理定義,儘管克卜勒當時只有幾何工具,透過誤差分析不斷的改進預測模型,克卜勒會發現橢圓也是遲早的事情。

克卜勒一生堅信自己的天文物理觀,從始至終都不知道自己已經悄悄地成為科學史上第一位「天文物理學家」。

-----廣告,請繼續往下閱讀-----

註解

此觀點出自於 Owen Jay Gingerich 的《Johannes Kepler and the New Astronomy》中,他在內文提到:如果克卜勒能從 20 世紀的字稱呼自己,我猜他會希望稱做自己為宇宙學家,但我會傾向我們能尊稱他為「第一個天文物理學家」。

參考資料

  1. Aiton, E.J. (1969). Kepler’s second Law of Planetary Motion. Isis A Journal of the History of Science Society, 60, 75-90.
  2. Wilson, C. (1968). Kepler’s derivation of the elliptical path. Isis A Journal of the History of Science Society, 59, 5-25
  3. Gingerich, O. (1972). Johannes Kepler and the New Astronomy. Quarterly Journal of the Royal Astronomical Society, 13, 346-373
  4. James, R.V. (1999). Johannes Kepler and the New Astronomy. New York:Oxford University Press
  5. 姚珩、黃瑞秋 (2003)。克卜勒行星橢圓定律的初始內涵。科學教育月刊,第 256 期, 第 33-45 頁。
  6. 姚珩 (2004)。行星面積定律的建立。科學教育月刊,第 257 期,第 32-38 頁。
  7. International LaRouche Youth Movement. (2006). Presentation of Kepler’s Astronomia Nova.
  8. 維基百科:Rudolphine TablesHarmonices MundiJohannes KeplerMusica universalis

作者資訊

  • 仰望天空的智人

目前為高三自學生,在升上高三的那個暑假,毅然決 然走上自學的道路。希望在有限的青春,不要只是僅追求紙上的對錯,而是時時刻刻的詢問世界,「為什麼?」。

活躍星系核_96
752 篇文章 ・ 120 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia