0

1
0

文字

分享

0
1
0

「大強子對撞機」製造解密:大強子對撞計畫太新,很多需求技術超越時代,必須用摩爾定律去估算──《到世界頂尖實驗室 CERN 上粒子物理課》

臉譜出版_96
・2018/02/26 ・2580字 ・閱讀時間約 5 分鐘 ・SR值 586 ・九年級

-----廣告,請繼續往下閱讀-----

龐大與精密兼備的大強子對撞機

3 萬 8000 噸的高科技機械,結合了巨大外型與極度精密的兩大特質,大強子對撞機位在一座長達 17 英里(27 公里)的隧道當中,該隧道當初是為了歐洲核子研究組織先前的大型電子正子對撞機(Large Electron–Positron Collider,簡稱 LEP)所建的。

大強子對撞機加速器由 1232 個偶極磁鐵和 392 個四極磁鐵、再加上一些功能更複雜的磁鐵組成,全部皆為超導體,並且在華氏 -456.3 度(攝氏 -271.3 度)的環境下工作,僅高於絕對零度(absolute zero)華氏 3.4 度(攝氏 1.7 度)(參見下方圖 1、圖 2)。

圖 1:顯示偶極磁鐵主要元件的示意圖。 圖/歐洲核子研究組織

超導體中電流的流動不會有任何電阻,某些材料──例如用於大強子對撞機磁鐵的鈮-鈦合金(niobium–titanium alloy)──當它們被冷卻到非常低的溫度時會變成超導,超導體因為電流更大,所以可以產生出比一般導體要強大得多的磁鐵。大強子對撞機超導磁鐵的電流為 1 萬 2000 安培,是常見家用電路的 1000 倍。傳統的磁鐵不可能強大到讓質子束轉彎、也無法將質子束維持在加速器的圓形軌道上,這部機器像目前這樣就已經夠大的了,它是一個 75 英里(120 公里)的環,想再更大也不會被允許。

我們可以用磁鐵來操控帶電的粒子束,就像我們可以用棱鏡和透鏡來偏離光束一樣。偶極(dipole)磁鐵用來使質子的軌跡轉彎,並使質子保持在圓形軌道中,四極(quadrupole)磁鐵則用於聚焦質子束,換句話說,四極磁鐵可以擠壓質子束。其他的多極磁鐵可以對質子軌跡作各項校正。要知道,質子每秒繞行 17 英里的大強子對撞機上達 11245 次;讓所有質子井然有序是絕對有必要的,才能讓他們保持在軌道上數小時。

-----廣告,請繼續往下閱讀-----
圖 2:在地下 300 英尺(100 公尺)的隧道中安裝 1232 個大強子對撞機偶極鐵的其中一個。 圖/歐洲核子研究組織

磁鐵繞組(magnet winding)總共需要 4750 英里(7600 公里)的電纜,每根電纜包含 25 萬條導線束。導線束的總長度相當於從地球往返太陽 6 次,再加上 136 次往返月球和 24 次加拿大蒙特婁到法國巴黎航班的距離,剩下的距離還可以讓你走到轉角的店舖 1046 次。

在了解這一切後,這部機器耗時了 15 年建造一點也不令人訝異,尤其裡面一些所需的技術在計畫剛開始的時候並不存在,是在建造過程中才被開發出來。

打造大強子對撞機遠超越時代技術

舉例來說,整個大強子對撞機計畫(加速器和偵測器)所需的計算能力和儲存容量的可取得性與成本是用摩爾定律(Moore’s Law)以當時的技術估算出來的。摩爾定律指的是每一至兩年你可以用相同的價格買到兩倍性能的的電腦或兩倍的儲存容量。同樣地,當初設計觸發器(trigger)和資料收集系統(data acquisition system)的物理學家,在新科技出現以前便已寄望新一代更快速的電子模組能夠滿足他們的實驗需求。

1971-2011 電腦處理器中電晶體數目的指數增長曲線和摩爾定律。source:Wikimedia

就大強子對撞機本身而言,與其儀器設計相關的第一篇論文出現在 1980 年代中期。當時參與其中的科學家和工程師們估計,如果要達到原型的最佳性能,大強子對撞機所需的超導磁鐵(需數千個磁鐵)大概在十年內可以做到工業化量產,這個預言確實實現了![1]而連接超導電纜所需的技術也是如此。

-----廣告,請繼續往下閱讀-----

所需技術的各個面向(例如感應焊接(inductive soldering)與超音波焊接)當時都已存在在其他領域,但只有歐洲核子研究組織的團隊與其他實驗室以及多個工業合作夥伴一同合作所開發的儀器才能夠滿足大強子對撞機計畫的規格和規模。這項技術開發的工作始於 1990 年代後期,2005 年其開發的結果已經可以用於大強子對撞機隧道上。同樣地,當時也有超導線的熔接機和切割機,但需要再修改才能符合大強子對撞機隧道的特殊規格。時至今日,大強子對撞機仍是目前規模最大、最冷的低溫設備裝置。

地底下、超真空:一個非常特別的「環」

如此圖的緊緻緲子螺管偵測器所示,加速器離子束管路通到四個大強子對撞機偵測器的心臟。 圖/歐洲核子研究組織

這個龐大的大強子對撞機圓環之所以會建於地底下 300 英尺(100 公尺)有兩個原因。第一,宇宙射線會干擾測量,所以把偵測器隔絕於宇宙射線的影響之外是絕對必要的;第二,保護人類和環境免受輻射影響也很重要。況且,考慮到當地房價,想蓋在地表上其花費也是無法想像的。

在大強子對撞機裡,兩束質子束在兩個獨立的真空管中循環,真空管內所有的空氣都被抽;如果沒有真空,質子將會與空氣分子碰撞,阻止其行進超過約 1/32 英寸(1 毫米)。強大的真空幫浦將壓力保持在 10-10 毫巴,即比大氣壓力低 1013 或十兆(10,000,000,000,000)倍。也就是說,在大強子對撞機管道中,每單位體積的空氣分子(例如每立方英寸或每立方厘米)比我們所吸入的空氣少了 1013 倍。

如果一個輪胎具有跟大強子對撞機的粒子束管一樣的密封程度,那會需要一百萬年才能放完氣。圖/Maaark@pixabay

粒子束管壁上塗了一層在歐洲核子研究組織發明的一種叫做「抓住」(getter)的特殊材料,這種材料一旦加熱後會吸收真空幫浦中沒抽乾淨的剩餘分子,它的作用就像黏蠅紙的黏膠條一樣。粒子束管路當然須經完美密封,如果一個輪胎具有跟大強子對撞機的粒子束管一樣的密封程度,那會需要一百萬年才能放完氣。

-----廣告,請繼續往下閱讀-----

大強子對撞機很大,但同時也對最細微的擾動非常敏感。例如,我們知道月亮重力的拉力會產生潮汐,通常只能在大量的水體中觀察到這個現象(例如海洋),而無法在地殼中看到,因為地殼的流體性相對來說小很多。不過其實月球的吸引力也會使地殼每天經歷微小的形變兩次,只是這個形變幾乎無法被察覺。然而,由於大強子對撞機也會隨著地殼的形變而微幅移動,這個月球的作用力使得大強子對撞機的操作員必須不斷地修正質子軌跡,才能將質子保持在大強子對撞機粒子束管路內。我們甚至可以說大強子對撞機證實了月球的存在,儘管當初並不是為了這個目的而建造的。

注解:

  1. 舉例來說,在 1980 年代,超導磁鐵在 42.2度絕對溫度的環境下可以有每平方毫米 2000 安培的電流,並產生 5 特斯拉的磁場。大強子對撞機在相同條件下,可以有比這多 50% 的電流,即每平方毫米 3000 安培。

 

 

本文摘自泛科學2018年2月選書《到世界頂尖實驗室 CERN 上粒子物理課》,臉譜出版

 

 

文章難易度
臉譜出版_96
84 篇文章 ・ 254 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。

1

2
1

文字

分享

1
2
1
身在臺灣也不能阻止他進行核分裂實驗,日本高能物理學奠基者——荒勝文策
PanSci_96
・2023/03/10 ・4147字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/陳立欣

你知道亞洲第一次成功的核分裂實驗是在臺灣完成的嗎 ?

1934 年 7 月 25 日晚間,就在今天的臺灣大學二號館 101 室,舉行了一項令人興奮的偉大實驗。科學家用高壓直線型加速器使質子加速前進,撞擊鋰原子而得到了兩個 α 粒子!這是亞洲第一次,也是世界第二次成功分裂原子核的實驗。而進行這項實驗的科學家,就是時任臺北帝大物理學講座首任教授——荒勝文策(Bunsaku Arakatsu)

醉心物理學研究,歐洲行開啟高能物理之路

荒勝文策出生於 1890 年 3 月 25 日,日本兵庫縣印南郡的一個小漁村。他從御影師範學校與東京高等師範學校畢業後,一度曾在佐賀縣擔任教職。後來在興趣的推動下,1915 年進入京都帝國大學物理學系就讀。1918 年他從京都帝國大學物理學系畢業,並旋即擔任該校講師。其後陸續擔任京都帝國大學物理學系助理教授、甲南高等學校教授、臺灣總督府高等農林學校教授。

從事教職之後,他還是對研究比較感興趣,後來因緣際會之下,他以臺灣總督府在外研究員的身分前往歐洲留學,正式開啟了他與高能物理學的淵源。

荒勝到了歐洲之後,曾經短暫留學於德國的柏林大學(今柏林洪堡大學),跟隨物理學巨擘阿爾伯特・愛因斯坦(Albert Einstein)作研究,當時也正是哥本哈根詮釋風靡全世界的時候。荒勝在自傳中表示,無論在物理或是思考面,都受到愛因斯坦相當大的影響,使得原本矢志攻讀理論物理學的他,轉而對原子核實驗產生了相當大的興趣。

1900 年的德國柏林大學(今洪堡大學)。圖/wiki

因此,一年後他到瑞士蘇黎世聯邦理工學院師從保羅・謝樂(Paul Hermann Scherrer),並進行有關鋰原子中自由電子分布的研究。緊接著他到英國劍橋大學卡文迪西實驗室,師從約瑟夫.湯姆森(Sir Joseph John Thomson)歐尼斯特・拉塞福(Ernest Rutherford)詹姆士.查兌克(Sir James Chadwick)等人共二年半的時間。(編按:此三人正是中學物理課本中介紹近代物理中,對原子核構造發現有重大貢獻的三位物理學家。湯姆森以陰極射線實驗發現了電子、拉塞福以金箔實驗確立了原子核的存在、查兌克則發現了中子。)

-----廣告,請繼續往下閱讀-----

他於 1928 年 8 月獲得京都帝國大學理學博士學位,而畢業論文的主題,就是運用愛因斯坦狹義相對理論裡的「質能互換公式」理論,撰寫出以原子釋出巨能的理論公式。他從事高能物理學研究之路,自此開啟。

臺灣首任物理學教授,完成亞洲首次核分裂實驗

1928 年 12 月,荒勝來到了臺灣總督府轄下的臺北帝國大學,擔任物理學講座的首任教授,並開設普通物理與原子論等相關課程,也是臺北帝國大學首次開設物理學相關課程。荒勝趁著在歐洲進修的機會,大肆採購了許多教學研究相關的圖書與器具,為臺北帝國大學的物理學發展帶來很大的幫助。

1932 年 4 月《自然》雜誌裏有一篇論文,描述英國劍橋大學卡文迪西實驗室怎樣用 Cockcroft-Walton 的加速器,製造快速質子,打入鋰(Lithium)原子核後引發核反應,產生一對 α 粒子來促成鋰蛻變。

經典的核反應之一——鋰同位素的 α 衰變示意圖。此一核反應示意圖中,Li-6()與氘()反應,形成高度激發狀態的中間產物 原子核,並立即再衰變為兩個 α 粒子()。圖中的紅色球體代表質子,藍色球體則代表中子。圖/wiki

在瞭解了這個過程內容後,荒勝就對助手木村毅一說:「這是個大變動之事,我們也來試看看吧!」

-----廣告,請繼續往下閱讀-----

荒勝決定在臺北帝大二號館 101 室建造 Cockcroft-Walton 型加速器。當時臺灣設備簡陋資源不足,有許多問題需要克服。除了器材需要打造,實驗室裡面也沒有天然的放射線源,荒勝借鑑臺北帝國大學理農學部無機化學講座的研究,嘗試從北投石中提煉釙充當 α 線源。此外實驗中需要的重水,也自行設計器材提煉取得。

最後就是電力的問題,Cockcroft-Walton 型加速器需要穩定而充沛的直流電力,進行實驗電壓不足將無法擊碎原子核。幸虧當時臺北工業職業學校提供器材奧援,才解決了直流電的問題。在萬事皆須重頭準備的臺北帝大也能完成此一實驗,由此可見荒勝文策不屈的意志。

1934 年 7 月 25 日夜裡,荒勝成功完成人工撞擊原子核(Li(p, α)He)的實驗。該次實驗重現並證實了 的反應,並發現用高速「氘離子」撞擊「鋰」,也能使鋰同位素產生 的反應。

這次實驗在當時轟動整個日本的物理學界。這是日本史上第一個加速器(全世界第二座這一型的加速器),而這一次追試成功,距離《自然》雜誌刊登論文也只不過經過 2 年。

-----廣告,請繼續往下閱讀-----

與原子彈無法迴避的淵源 二戰未能成功的 F 計畫

1941 年,荒勝成功使鈾原子與釷原子產生核分裂反應,這使得荒勝註定要在原子彈計畫的篇章中留下身影。二戰後期,大日本帝國海軍招集荒勝進行研究,成立了一個研發小組,成員也包含了湯川秀樹

荒勝一開始就決定採用離心機來提煉鈾 235,而不是世界上普及的熱擴散法。他的研究成果,也曾被美國研究原子彈的曼哈頓計劃作為數據計算參考。

鈾-235()的核分裂反應示意圖。鈾-235 受到中子(n)撞擊後,形成極度不穩定的鈾-236,此不穩定的鈾隨後分裂為兩個較輕的原子(Ba-144 與 Kr-89)、產生三個新的中子,並伴隨能量釋放。這些新的中子會再去撞擊周圍其他的鈾-235,如此不斷重複進行,產生連鎖反應,引發巨大的能量。圖/wiki

荒勝文策曾自言:

我自小喜歡旋轉的東西,也許這是我選擇離心機的真正原因。我一輩子喜歡的研究,就是轉動體。

然而,由於當時日本政府內部的混亂以及資源的相對缺乏,致使日本核計畫未能如美國、英國與納粹德國一樣發展迅速。以至於在荒勝的 F 計畫先從日本遷到朝鮮,後因大戰結束也被迫中止了 F 計畫。

-----廣告,請繼續往下閱讀-----

1945 年 8 月 6 日,美軍在廣島投下原子彈,驚人的爆炸力與毀滅性的災難,引起了日本學界的重視。日本陸軍動員了東京理化研究所的仁科芳雄前往觀察研究,而日本海軍則是委任京都帝國大學的荒勝文策,並組織「京都帝國大學原爆災害調查班」進行調查。

荒勝與仁科皆震驚於爆炸威力之強悍,且不斷進行爆炸的計算分析,兩人共同的結論就是「這應該就是原子彈」,經過計算荒勝精確指出爆炸時的高度與位置,並得出閃光時間約在五分之一秒和二分之一秒之間,其調查報告數據計算之精確,震驚世界。

可惜的是,雖然有著最頂尖的相關學識,卻因戰爭的局勢而不得不被迫放棄研究。

戰後,聯合國軍最高司令官總司令部(GHQ)於 1945 年 9 月 28 日下令禁止日本進行有關原子物理與航空學的研究,並拆除京都大學荒勝研究室的迴旋加速器,將之傾倒入琵琶湖。荒勝文策的大量報告與研究筆記也遭到沒收,該次拆除行動也引來了國際間的一陣撻伐。甚至引發了包含美國麻省理工學院在內的科學家們對美國陸軍的抗議,美國陸軍長官並因此引咎道歉,承認拆除行動的錯誤。

-----廣告,請繼續往下閱讀-----

雖然在戰後無法持續相關的研究,荒勝文策仍影響了日本高能物理學的發展。無論是在京都大學發展的 Cockcroft-Walton 型加速器,或是發表在《自然》雜誌與木村和植村一同利用宇宙射線進行的研究。甚至是湯川秀樹,也在畢業後特地回母校旁聽其課程,並深受其影響。荒勝的努力為日本高能物理學在荒野中展開了道路,也讓原子能科學在日本持續發展。

荒勝文策與他在京都大學研究室的迴旋加速器。圖/wiki

在 1949 年湯川秀樹獲得諾貝爾物理學獎後,荒勝感嘆到道:

晚輩得了諾貝爾獎一切都值得了(後輩がノーベル賞を受賞したことで全てが埋め合わされた)。

雖然是欣慰之語,或許也透露出這位奠基者心中仍有所遺憾。

角落也無法掩蓋裡的光芒,開創日本高能物理的荒野道路

鑽石即使擺放在角落,也會發出迷人的光芒。我想,用這句話來形容荒勝文策再適合也不過了。身處日本學術邊陲的臺北帝國大學開設理科講座,在講座成員只有 4 個人的情況下,在不到兩年的時間內就完成了 Cockcroft-Walton 型加速器的設置;甚至完成了全球第二次、亞洲第一次的核分裂實驗,真的非常的不容易。在人手不足、資源不足、連放射線源都沒有的狀態下,還能使用北投石完成實驗,荒勝的堅持態度也為科學研究鍥而不捨的精神立下標竿。

-----廣告,請繼續往下閱讀-----

荒勝文策在臺北帝國大學物理科講座的原子核加速實驗,在物理史上的意義是多重的。對臺灣而言,這是臺灣的名字第一次在物理學學術論文期刊。而遺留在臺灣的加速器殘骸與相關器材,成為戰後臺灣成立物理系、發展核子物理實驗的契機。雖然荒勝藉著這次的實驗重返日本,就未再返回臺灣,但他對於臺灣高能物理學發展,仍舊猶如荒野中的第一道腳印,留下了不可磨滅的痕跡。

參考文獻

  1. 鄭伯昆,〈台大核子物理實驗室 (四)有關的日本科學家〉,《物理雙月刊》,卅卷五期,2008 年 1 月,頁 574-580。
  2. 松本巍著,蒯通林譯《臺北帝國大學沿革史》,頁 7-11。
  3. 張幸真,〈臺灣知識社群的轉變——以臺北帝國大學物理講座到臺灣大學物理系為例〉,2003 年 7 月 31 日,頁 101。
  4. 轉引木村毅一,〈廣島原爆後日譚〉,《神陵文庫》第五卷,1988 年 2 月 29 日,京都三高自昭會,頁 14。
  5. 張幸真,〈臺灣知識社群的轉變-以臺北帝國大學物理講座到臺灣大學物理系為例〉,2003 年 7 月 31 日,頁 106。
  6. Info,(阿文開講——F計畫〉,《臺灣物理學會雙月刊》,2016 年 9 月 7 號。
PanSci_96
1219 篇文章 ・ 2184 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

8
1

文字

分享

1
8
1
希格斯玻色子之後,持續運作的大強子對撞機又做了什麼?
科技大觀園_96
・2021/11/01 ・2735字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

大強子對撞機(Large Hadron Collider, LHC)隸屬於歐洲核子研究組織(European Organization for Nuclear Research, CERN),是一座巨大的粒子加速器,它包括一個位於地底、周長 27 公里的粒子加速環,就像粒子的跑道一樣。質子或是重離子在超導磁鐵的引導下,在跑道上急速奔跑然後對撞,物理學家就從這些對撞事件中,尋找新的粒子,探究未知的物理。

粒子發現年表。2012 年,科學家在大強子對撞機的對撞事件中,找到希格斯粒子。圖/何庭劭繪

LHC 在 2012 年就撞出了眾所期待的希格斯粒子,當時的物理界一片歡欣雷動,而最早預測希格斯粒子存在的希格斯本人以及同年提出理論的恩格勒,也在隔年獲得諾貝爾物理獎。LHC 很快就把主線任務解完了,那然後呢? 8 年過去了,LHC 並沒有因為主線任務解完就退休,這些年來,它仍然努力的製造一次又一次的對撞事件,畢竟科學家預期在 LHC 的撞擊能量尺度,應該還可以看到一些新東西,然而實際情況是如何呢? 

發現希格斯粒子的關鍵事件:希格斯粒子衰變到雙光子。圖/陳凱風提供

偏偏不倒的危樓—標準模型

在 LHC 找到希格斯粒子之後,研究團隊於 2015 年底起,把 LHC 的對撞能量從原本的 7 TeV 或是 8 TeV(1 TeV=1012電子伏特)調高到 13 TeV,運作了 3 年,這段時期稱為 LHC 的 Run II。撞擊的能量愈高,就愈能撞出罕見的事件。更明確的說,LHC 能撞出的粒子質量上限,大約落在總撞擊能量的 1/6,(在粒子物理中,粒子質量通常以能量單位表示),比這個能量更重的粒子出現的機率太低,事件樣本也太少,因此要有更多觀察,就必須把對撞能量拉高,並且累積更多數據。

全世界的物理學家正在針對這 3 年的數據做分析,長期參與 LHC 實驗的臺大物理系教授陳凱風說:「雖然還沒有分析完,目前的確是存在一些不能被排除的意外訊號,但是統計上還不足以證實這些是新物理所造成的現象。」在尋找新粒子這個目標上,雖然研究成果豐碩,但是量測結果並沒有明顯超出標準模型的範疇。

-----廣告,請繼續往下閱讀-----
大強子對撞機近期 CMS 偵測器照片。圖/陳凱風提供

另一方面,研究團隊也希望根據新資料的分析,來修正標準粒子模型裡的參數,但目前測量出的結果,卻都和理論預測大致相符。「這是一種很詭異的感覺。」陳凱風形容。事實上,現有的標準粒子模型並不是很穩定,陳凱風說:「我們認為目前的理論架構一定有些毛病,但偏偏又找不出來。這就好像我們蓋了座危樓,但又找不出如何補強它,而地震來它還偏偏不會倒。大概就是這麼微妙的感覺!」

舉例來說,標準粒子模型包括了六種夸克:上夸克、下夸克、魅夸克、奇夸克、頂夸克、底夸克,以及六種輕子:電子、緲子、濤子,以及三種對應的微中子。而其中的頂夸克質量明顯比另外五個夸克大非常多,而微中子的質量小到無法直接測量,這在物理學家眼中,是不應該自然發生的;此外,標準模型也無法滿足這個幾乎只存在物質、絕大多數反物質都消失的宇宙。為了解決這個問題,物理學家也提出一些假設,例如,會不會其實還有更重的夸克與輕子、或是更多奇異的玻色子存在呢?「但從 LHC 的實驗結果,我們還沒有找到符合的訊號。」陳凱風說。

粒子物理標準模型的粒子成分。圖/Wikimedia commons

 「你當然也可以說,反正宇宙就是這樣運作,但我們覺得背後一定有某個機制導致這樣的結果,只是我們就是沒找到。」陳凱風並且以 100 多年前的元素週期表舉例,當初的週期表也是東缺西漏,但隨著一個個新元素的發現,這些缺口也漸漸被補滿。「而現在的標準粒子模型,就像是有著漏洞、明顯還沒完成的拼圖,卻又找不到東西來填補。」陳凱風說。 

臺大物理系教授陳凱風。圖/簡克志攝

Run III — LHC 改頭換面

儘管 LHC 的 Run II 呈現的結果意外的平靜,但 Run III 已經準備在明年啟動。

-----廣告,請繼續往下閱讀-----

在 Run III 階段,LHC 將把對撞能量再往上調高至 14 TeV以上,這是 LHC 當初設計的最大許可能量。另一方面,研究團隊將對 LHC 做許多技術上的修改測試。這是因為在 Run III 結束後,LHC 將進行一次大改造升級,要將每次參與對撞的粒子數量與密度提升,這樣一來,對撞事件發生的次數會跟著上升 5~10 倍。

為了因應這樣的升級,許多軟硬體、零件也必須跟著升級,其中最重要的一項就是偵測器。比如說目前 LHC 底下的 CMS 實驗所裝載的量能器,主要材料是以一種鉛鎢玻璃晶體為材料的閃爍體,而這些安裝在偵測器頂蓋處的晶體長期接受高輻射劑量,已經有了不少缺陷,變得愈來愈不透明了。陳凱風說:「試想如果升級之後,還用一樣的零件材料,那原本經過 10 年才會損壞的,現在只要 1 年就會接近無法運作了。」因此,偵測器必須跟著升級才行。

新的量能器(High Granularity Calorimeter, HGCAL)會以矽半導體材料為主,並且切分成 28 層排成一列,這樣做的好處除了較不易打壞外,每一層都能獨立送出粒子經過時的位置資料,可以更準確地描繪出粒子穿越偵測器的物理反應。目前由臺大物理系教授呂榮祥、裴思達主持的硬體實驗室,就正在研製這種新型量能器。再加上也會一同升級的各種裝備,未來可以對粒子的物理特性有更精準的量測。 

▲在臺大製作的次世代量能器模組(開發中),做為 LHC 底下 CMS 實驗的新型偵測器,影片中可以看到模組上膠的過程,本影片由臺大物理系呂榮祥教授提供。
▲在臺大製作的次世代量能器模組(開發中),為上述影片更進一步組裝的過程,本影片由臺大物理系呂榮祥教授提供。

LHC 有來自全世界 85 個國家、超過 8,000 位物理學家參與,可說是全世界最大的實驗計畫。但在加速器的發展上,LHC 可能還不是終點,未來計畫籌建的加速器計畫,還包括 CERN 的未來環形對撞機(FCC)、中國的環形正負電子對撞機(CEPC),以及日本的國際直線對撞機(ILC)等。

-----廣告,請繼續往下閱讀-----

雖然說這些計畫是否真的會有所進展,還要看未來的局勢發展,但我們不妨期待包括 LHC 在內的這些實驗計畫,會繼續帶給我們怎樣的驚喜!就如陳凱風在訪談快結束時所說:「希望我們下次討論的,是在對撞的數據中,我們發現了什麼有趣的新物理!」

所有討論 1
科技大觀園_96
82 篇文章 ・ 1124 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。

0

3
0

文字

分享

0
3
0
昂貴的粒子物理基礎研究值得嗎?你一定用過CERN發明的這個東西!──《到世界頂尖實驗室 CERN 上粒子物理課》
臉譜出版_96
・2018/02/26 ・3811字 ・閱讀時間約 7 分鐘 ・SR值 535 ・七年級

-----廣告,請繼續往下閱讀-----

昂貴的粒子物理基礎研究值得嗎?

基礎研究如大強子對撞機的建造成本很高,每個人都有權利詢問是不是值得。圖/Image Editor@flickr

粒子物理學的基礎研究當然是非常有趣的,但它也是很昂貴的。舉例來說,歐洲核子研究組織(European Organization for Nuclear Research,簡稱為CERN )大強子對撞機的建造成本(包括人員、儀器研發和建造材料)約為 30 億歐元(約 33 億美元)。超導環場探測器本身的建造費用為 4.55 億歐元(5 億美元)。儘管這個數字看起來很大,但歐洲核子研究組織 8.25 億歐元的年度預算(約 9 億美元)只相當於每個年紀大到可以喝咖啡的歐洲公民喝一杯咖啡加總起來的費用。

但是這筆金額還是很龐大,所以每個人都有權利詢問這筆錢是不是花得值得。

在此,我將解釋投資於研究的經費不僅在經濟上帶來百倍以上的回報,而且可以造福整個社會。由於基礎研究帶來了科技上的突破,醫療技術和通信技術因而有所進步。物理學基礎研究徹底改變了我們的生活方式,而且改變還在持續當中。

-----廣告,請繼續往下閱讀-----

以歐洲核子研究組織為例

在本文中,我主要以歐洲核子研究組織作為例子,因為它是目前最大且仍在運轉當中的國際性粒子物理學研究實驗室。

日本的 J-PARC(Japan Proton Accelerator Research Complex) 是一個多用途研究中心,他們也使用質子加速器。其他實驗室,如美國的 SLAC 國家加速器實驗室(SLAC National Accelerator Laboratory) 和費米實驗室(Fermi National Accelerator Laboratory, FNAL)以及德國的 DESY 一直到不久以前都還是非常活躍的粒子物理學研究中心,但他們的加速器目前已經停止運作。費米實驗室的主注入器(Main Injector)則仍在運轉中,為 MINOS、Minerva 和 NOVA實驗供應微中子束。其他實驗則正在等待批准或仍在前置興建階段。還有其他幾個較小的研究中心,例如加拿大薩德伯里的微中子觀測站實驗室(Sudbury Neutrino Observatory Laboratory, SNOLAB),日本的高能加速器研究機構(KEK)和義大利的 Gran Sasso,這些研究中心都是專門研究微中子物理和暗物質搜尋。最近,有參與粒子物理學研究的所有國家決定在大型國際實驗合作計畫中共享資源(例如歐洲核子研究組織正在進行中的實驗合作計畫)。

每年有來自約五十個不同國家的二百五十名學生參與歐洲核子研究組織的暑期課程。這些學生不僅各種研究中都有貢獻,還與來自世界各地的年輕人交流。資料來源:歐洲核子研究組織

粒子物理學基礎研究的回報並不必然都是直接的。舉例來說,目前沒有人知道希格斯玻色子將來會不會有實際的用處,很可能不會!我們並不是因為期待希格斯玻色子能夠解決人類的大問題而做這個研究的。相反的,該研究的目的,是為了能更了解我們周遭的物質世界,並將提高我們的知識層次。

-----廣告,請繼續往下閱讀-----

所以說,基礎研究實驗室的首要任務是滿足人類對知識的深度渴求。自從人類存在以來,人們一直都想知道自己的起源和命運。但這些實驗室其實還有其他三個主要目標:為科技發展作出貢獻培養高度專業的人力以及(就國際實驗室而言)透過科學研究促進和平與國際合作

基礎研究帶來燈光,而不止步於漂亮的蠟燭

不過,我們不該低估任何新發現的潛力。誰能預言一百年前物理學家在電子和電磁波上的研究,會對我們今日的生活產生如此驚人的影響呢?一件軼事(即便它有點爭議)可以用來說明這一點。據說英國財政大臣(即財政部長)曾質問法拉第(Michael Faraday)他的電學研究是否有任何潛在用途時,法拉第顯然回答說他不知道可以做什麼用,但法拉第補充說:「先生,將來有一天你可能可以課它的稅」。

正是對電學的基礎研究,徹底改變了我們的生活,讓我們的閱讀不再使用蠟燭。圖/MSphotos@pixabay

電子和電磁學的研究帶來了電子用品、電信和電腦的發展。過去幾個世紀中,物理學家的研究成果和技術人員和工程師的專業知識相結合,並將發現應用在現實中,進而重塑了我們的日常生活。如果沒有物理學的基礎研究,我們今天就會靠燭光閱讀。正如一位同事向我指出的,我們肯定會有非常漂亮的蠟燭,但就只是蠟燭。基礎研究不僅對我們的生活產生重大影響,而且也啟蒙了我們的精神,使人類擺脫了無知的沉重負荷。

-----廣告,請繼續往下閱讀-----

不管在理論還是在實驗,好奇心都引導了基礎研究。基礎研究必須不受到限制,使想像力和創造力得以自由流動。縱使無法保證一定能夠發現什麼,但物理學家必須檢視所有的可能。另一方面,應用研究的目的,在於為具體的問題找出實際的答案,它以基礎研究為本,帶來了科技突破,並有更進一步的發展。物理科學應用於其他學科之中,也在各個工業領域當中扮演了重要的角色。從經濟的角度來看,物理學影響著整個社會,我們在本章中將看到,物理學在各領域、各方面的成績,已在日常生活當中影響我們每一個人。

對各國的經濟回報

已有幾份研究試著評估基礎研究對經濟所帶來的影響。經濟與商業研究中心(the Centre for Economics and Business Research, CEBR)為歐洲物理學會(European Physical Society)所做的研究很具啟發性。這份研究是從科技和科學的角度評估基礎研究對歐洲物理學的產業所造成的影響。因此,它涵蓋了所有仰賴電機工程、機械和土木工程、能源、計算、通信、設計製造、運輸、醫學和航空的經濟活動。

仰賴物理學的產業對於歐洲個過總收入之貢獻的百分比,這些國家以其雙字母代碼表示:DE為德國、FR為法國、GB為英國、IT為義大利、ES為西班牙、NO為挪威、NL為荷蘭、CH為瑞士等。 資料來源:歐洲物理學會

2010 年的統計指出,仰賴物理學的產業共為歐盟的 27 個國家、瑞士和挪威創造了 3 兆 8000 億歐元的收入(上圖),相當於這些國家總收入的 15% 左右,超越了零售業的總額。總共有 1 千 5 百 40 萬人在這個產業工作,也就是歐洲總勞動人口的 13%。

-----廣告,請繼續往下閱讀-----

促成跨時代的科技發展

在大強子對撞機中,4-緲子候選事件示意圖。圖/ ATLAS, Collaboration @wiki

正如我們在整本書中所看到的,當今粒子物理學的研究需要高度精密複雜的工具才得以進行。通常在設計階段,大型實驗所需的技術並不存在,這些技術必須在過程當中被開發出來,特別是像大強子對撞機這樣二十年前就開始籌備規畫的超大型計畫。大強子對撞機的建造工程,使得若干技術超越當時的疆界,過去從不曾有任何儀器會用到如此強大的超導磁鐵,更不用提這整個計畫的規模,超導、極度真空和極度低溫相關的技術都因此而有很大的進展。

大型實驗合作計畫的所有測量設備也是如此,大強子對撞機所使用的偵測器都需要更高的抗輻射能力以及更高性能的電子模組,在承受極端輻射水平的同時,還要能夠高速與大量採集數據。這個需求提供了建造網格(Grid)的動力,網格是一個龐大的計算機網絡,串聯了成千上萬台遍布在世界各地的電腦,提供了大強子對撞機實驗所需的計算能力。

技術方面的進步已化為現實,並應用在各式各樣的產業中。簡單舉幾個例子,這些應用包括了配有光纖的濕度感測器、使用永久磁鐵之引擎的隔膜系統、設計印刷電路板的開放原始碼軟體,以及 3D列印的附加處理技術。

-----廣告,請繼續往下閱讀-----

全球資訊網──來自歐洲核子研究組織的最好的禮物

某些發現也對大部分地球居民的日常生活有直接影響。例如歐洲核子研究組織最成功的結果:全球資訊網(World Wide Web)。全球資訊網深遠地改變了我們取得訊息和知識的方式(包括新興國家),從而影響到地球上數十億人的日常生活。

提姆‧伯納斯-李在歐洲核子研究組織工作時發明了全球資訊網。這張照片攝於1994年,當時他正坐在一個電腦螢幕前面,而螢幕上顯示的正是世界上第一個網頁。根據資料,全球資訊網每年刺激了市值 1.5 兆元的商業交易量。資料來源:歐洲核子研究組織

到目前為止,歐洲核子研究組織對人類最大的影響並不是發現了希格斯玻色子,而是發明了全球資訊網(World Wide Web,簡稱WWW)。全球資訊網是由提姆.伯納斯─李(Tim Berners-Lee)和他的團隊於 1989 年開發出來,當時他在歐洲核子研究組織工作,而當初開發的目的是為了要解決一個影響到歐洲核子研究組織成千上萬名研究人員的問題。科學家們需要一個能有效交換訊息的通訊方式,大多數這些物理學家經常在他們自己的研究機構和實驗室之間穿梭,以參與各種研究活動。為了讓這些物理學家可以彼此交換訊息而不需在行李箱中拖著幾公斤列印出來的文件,全球資訊網於焉而生。

如果說伯納斯─李是一位有遠見的人,那麼我們也可以說歐洲核子研究組織具有非常前瞻的想法,決定將全球資訊網開放給全人類使用,而不要求任何版權收入。由於歐洲核子研究組織的研究是受到公共資金資助,因此我們也希望全球資訊網能使每一個人都受益。網路使得資訊可以在世界上任何地方流通和取得,誰能忽視這個溝通工具對我們的生活所產生的影響呢?

-----廣告,請繼續往下閱讀-----

粒子物理學界有愈來愈多人認同「開源」(open-source)的觀念,例如像是知識可以自由、免費地共享,並且透過網路傳播開來。歐洲核子研究組織的實驗結果已經不再只發表在昂貴的專業期刊上,現今所有的資訊都可以在「開源」社群媒體中取得。不僅在科學出版方面是如此,有些軟體也是以合作和共享的精神和其他的機構、業界或社會共享。這樣可以確保來自新興國家的大學和機構不至於處於劣勢。

 

 

本文摘自泛科學2018年2月選書《到世界頂尖實驗室 CERN 上粒子物理課》,臉譜出版

 

 

 

臉譜出版_96
84 篇文章 ・ 254 位粉絲
臉譜出版有著多種樣貌—商業。文學。人文。科普。藝術。生活。希望每個人都能找到他要的書,每本書都能找到讀它的人,讀書可以僅是一種樂趣,甚或一個最尋常的生活習慣。