0

0
0

文字

分享

0
0
0

箭毒蛙越鮮豔就越毒嗎?又為什麼不會毒死自己?──《科學月刊》

科學月刊_96
・2018/02/27 ・3269字 ・閱讀時間約 6 分鐘 ・SR值 610 ・十年級

  • 文/嚴宏洋│國立海洋生物博物館特聘講座教授
金色箭毒蛙(Phyllobates terribilis) 圖/kirahoffmann @Pixabay

南美洲哥倫比亞西北邊山區的喬科省(Chocó)原住民長久以來一直將「分趾蟾科(Dendrobatidae)」中的「毒葉蛙屬(Phyllobates)」蛙(土著將它稱之為 kokoi 蛙)的皮膚分泌液(也是稱之為 kokoi)塗抹在箭頭上,用來麻醉被射中的獵物。早在 1869 年有位哥倫比亞的研究者阿朗戈(Posada Arango)首次以論文報導這毒物的生物特性。1957 年時瓦斯森(S. H. Wassen)對如何製作此箭毒及其藥理特性給了簡單的描述。

哥倫比亞原住民的麻醉藥:箭毒蛙毒液

但對這種蛙毒進行系統性的研究,要等到 1960 年代起才開始,由美國的研究人員馬吉(M. Märki)及威特科普(B. Witkop)對黑腿箭毒蛙(Phyllobates bicolor毒液的生化特性及對神經的毒性,做科學化的研究。

kokoi 蛙體重約有 1 公克、體長約 2~3 公分而已。一般是藏身於地表的植被內很難被看到,但土著們會在吹口哨時,同時用手指頭敲擊臉頰,而發出 fiu-fiu-fiu 的聲音。kokoi 蛙就會發出相同的回應叫聲,土著們就可以藉此定位去抓這蛙。因為經驗的關係,土著們在抓這蛙時都要用樹葉包著手,避免直接碰到蛙的皮膚,然後將牠們裝在竹筒內帶回部落。處理時用竹子製做成的竹籤(名稱 siuru kida),從蛙嘴穿過身體,放在火上烤,會使得乳白色毒液從背上的皮膚釋出。土著們就將箭頭沾上這毒液,然後晾乾。一隻毒蛙所分泌的毒液,可以製備約 50 隻箭頭。箭頭後方會裝上棉花狀的填充物,使其能與吹箭筒可以密合。而吹箭筒主要是用「芎榙棕櫚(chonta palm)」葉脈而製作成的中空吹筒,長度約為 20~25 公分。

過去在部落間的戰爭時,毒箭頭曾被用來射殺敵人;但目前只用來獵取豹、鹿、猴子及鳥類時使用。獵物在中箭後會導致癱瘓,然後死亡。獵人會用刀割下中箭部位周邊的肌肉及箭頭,以避免事後誤食。事實上這種毒素,與來自植物的「箭毒(curare)」一樣,是不會經由口腔進入體內。但若口腔黏膜有傷口,就會導致中毒。

-----廣告,請繼續往下閱讀-----

蛙毒化合物研究

1962 年 8 月時馬吉及威特科普團隊的拉薩姆(M. Latham)女士在「杉莞流域(Rio San Juan)」地區採集了330 隻 kokoi 蛙,然後每十隻一組用乙醚麻醉安樂死後,將皮膚取下切成小片,在室溫下用甲醇粹取約 2~3 小時。然後倒掉上層溶液,再添加新的溶液,經過一夜後再過濾,進行真空乾燥,再冷藏於冷凍庫內。以白老鼠為材料,確認了這蛙毒的 50% 致死濃度(LD50)為 570(±40)μg/kg。這些初步的研究工作,以今天的標準來說是簡陋了些,但是對後續的研究工作,奠定了基礎的知識。

接著在美國國家衛生研究院工作的達利(J. W. Daly)在 1964、1966 年也加入蛙毒的研究。當時在鄰國巴拿馬從事兩棲、爬蟲類研究的邁爾斯(C. W. Myers)向達利提出,共同合作有計畫的對分佈於「杉莞流域」地區所有的毒蛙皮膚分泌的有毒化合物,進行整合性的研究。

箭毒蛙的體色越是鮮艷,牠的皮膚分泌物的毒性越高?研究並沒辦法證明這個假設。 source:wikimedia,圖中為 Ranitomeya amazonica

當時他們想要測試的一大假說是:若箭毒蛙的體色越是鮮艷,牠的皮膚分泌物的毒性,也會相對的高,以達到「警戒色」的目的。但結果卻令他們很失望,因為所得到的數據無法支持他們的假說。但是這些大規模長達 30 多年的持續研究,發現到毒蛙所分泌的毒素,包括蟾毒素(batrachotoxin, BTX)以及一些雙環的生物鹼,如高毒性的普密力托辛(pumilitotoxins)、三環類(coccinelline-like tricyclics)、表巴蒂啶(epibatidine)、愛濟啶(izidines)、吡咯啶(pyrrolidines)和幾乎無毒的十氫喹啉(decahydroquinolines)。

來自合成,也來自食物攝取的天然毒化物

達利與邁爾斯多年的工作和其它研究者們的努力,一共分離出超過 800 種生物鹼和至少 20 多種新的化學結構。更獨特的是這些天然化合物,只存在於毒蛙的分泌物。

-----廣告,請繼續往下閱讀-----

毒蛙的毒液所含的生物鹼,到底是透過什麼生理機制而導致動物的死亡呢?後續的研究發現這些生物鹼與細胞膜上的鈣離子和鈉離子通道受體結合後,會使得這些離子通道無法正常的關閉,造成離子的流失,從而影響神經、肌肉和心肌的功能,而導致死亡。

蟾毒素(batrachotoxin, BTX)的化學結構。儘管達利等人無法證實原先的假說,但這長達 30 年的蛙毒研究依然豐碩:分離出蟾毒素等超過 800 種生物鹼和至少 20 多種新的化學結構。 圖/wikipedia

在研究毒蛙的分泌物過程中,研究者們發現到這些蛙不會自己合成有毒的生物鹼,而卻是從食物中攝取到含毒的物質,然後儲存到皮膚上的毒腺。研究成果顯示這些箭毒蛙可以從攝食到的許多昆蟲,包括:螞蟻、甲蟲、蚜蟲和馬陸,獲取高達 800  種以上的生物鹼類毒物。

箭毒蛙如何「死道友不死貧道」,不會毒死自己?

但這項發現又引發了另一個有趣的問題,那就是:這些毒蛙是用什麼樣的機制,避免自己被累積的生物鹼所毒害呢?這問題多年來困擾了許多研究者,而要到最近研究者們經由使用電生理及分子生物學技術,去研究箭毒蛙細胞膜上離子通道基因的突變,才得以找到答案。

2017 年 9 月 22 日美國德州大學奧斯汀校區整合生物學系扎康(Harold Zakon) 教授( 筆者博士論文的指導教授之一,也是第一個博士後的指導教授)的團隊在 Science 期刊發表了論文,顯示了蛙毒之一的「表巴蒂啶(epibatidine)」之所以有毒性,主要是它會與尼古丁乙醯膽鹼受體結合,導致了正常的乙醯膽鹼無法與受體結合,從而阻斷了神經訊號的傳導。而且即使是微公克(microgram)的劑量,就會導致死亡。

-----廣告,請繼續往下閱讀-----

對 28 種分趾蟾科的毒蛙及 12 種不含毒物的蛙,經由電生理及分子生物學的研究,確認了在毒蛙身上的尼古丁乙醯膽鹼受體上,有一個胺基酸序列的變異,導致蛙體內尼古丁乙醯膽鹼受體靈敏度的降低,因而不會與「表巴蒂啶」蛙毒結合,體內累積的毒素,不會對毒蛙自己造成毒害。但是乙醯膽鹼是毒蛙要活下去所必要的神經傳導物質,雖然受體上的突變,可避免與累積的蛙毒結合,但也會降低與乙醯膽鹼的結合。因而演化上的另一傑作,就是乙醯膽鹼受體上有另一個胺基酸序列的變異,使得它能與乙醯膽鹼正常的結合,進行神經訊號的傳導。

換句話說,受體上兩個胺基酸的替換,一方面可使毒蛙不被自己儲存的毒素殺死;而另一方面,卻又能維持正常的乙醯膽鹼神經傳導的功能。

乙醯膽鹼(Acetylcholine)化學結構。毒蛙以變異乙醯膽鹼的方式避免毒害。 圖/wikipedia

很湊巧的是,在上述的論文發表 4 天後,紐約州立大學阿爾卑尼校區的黃秀雅、王經國夫婦(筆者臺灣大學動物系高兩屆學長、姊。我曾於 2001 前往王經國教授在哈佛大學醫學院的實驗室,進行鈉離子通道電生理的研究 。)在「美國國家研究院學報(PNAS)」上發表了一篇金色箭毒蛙(Phyllobates terribilis),如何避免被自己儲藏的蛙毒所害的機制的論文

  • 正在吃飯的金色箭毒蛙

金色箭毒蛙能透過食物將蟾毒素(BTX)儲藏在皮膚,以達自衛的作用。蟾毒素進入動物體內,會使得「電壓門控型鈉離子通道(voltage-gated Na+ channel)」持續保持開啟的狀態,而導致動物的死亡。他們發現在蛙體上,鈉離子通道上的蟾毒素受體上的天門冬醯胺酸(asparagine)被蘇胺酸(threonine)所取代後,蟾毒素就不會與鈉離子通道結合,因而不會對自己造成毒害。造成這胺基酸的取代主要是由 AAC 核苷酸,突變成 ACC 所導致的。

-----廣告,請繼續往下閱讀-----
蘇胺酸(threonine)化學結構。以蘇胺酸取代天門冬醯胺酸(asparagine)是金色劍毒蛙免於毒害的關鍵。 圖/wikipedia

前述的兩篇論文,分別分析了箭毒蛙如何演化出避免表巴蒂啶及蟾毒素這兩種生物鹼,在牠們體內造成毒害的機制。但除了這兩大類的生物鹼外,毒蛙對其它種類的生物鹼,是使用哪些機制來保護自己,會是很有挑戰性的研究題目。

延伸閱讀:

 

 

本文轉載自《科學月刊》2018 年 2 月號 578 期,原文標題為〈探究箭毒蛙「死道友,不死貧道」的生物毒物特性〉。

文章難易度
科學月刊_96
249 篇文章 ・ 3496 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

1

1
2

文字

分享

1
1
2
精神個案系列:罌粟上癮的天鵝與鸚鵡
胡中行_96
・2023/06/25 ・2539字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

中歐國家斯洛伐克西南部,緊鄰匈牙利的邊界上,有個人口約3萬幾千人的小鎮,叫作 Komárno。[1-3]農夫 Balints Pam 在當地種植罌粟已有多年,卻是第一次見到這種景象:[4]根據歐洲的新聞媒體報導,由於近年氣候變化,喀爾巴阡山脈地區冬季溫暖,許多野生天鵝全年滯留,不再隨季節移動。[4]候鳥遷徙的主要目的為覓食,[5]既然不走了,缺乏食物的時候,多少便去田裡逛逛。Balints Pam 的作物當然也難逃一劫。[4]

罌粟田示意圖。圖/Katarzyna Pe on Unsplash

罌粟

在罌粟屬(Papaver)之下,鴉片罌粟(Papaver somniferum L.)和渥美罌粟(Papaver setigerum D.C.)這兩個種,皆含有嗎啡(morphine)、可待因(codeine)、蒂巴因(thebaine)、那可汀(noscapine或narcotine)與罌粟鹼(papaverine)。不過,以上 5 個鴉片生物鹼(opium alkaloids)在鴉片罌粟中的含量,均勝過渥美罌粟。[6]因此,作為經濟作物,種植前者才划算。

鴉片罌粟的花瓣脫落後 5 至 10 天,可以收成其蒴果中的乳膠,乾燥即為鴉片(opium),也就是萃取嗎啡等藥物的原料。如果整株草本植物擺著任它繼續長,接下來在成熟的蒴果裡,便會有能以機器採收,適合做麵包及糕點的罌粟籽。1970 年代以前,人們以為乳膠流完才生出來的罌粟籽,不含藥用成份。後來才發現,原來它們亦有鴉片生物鹼,吃了藥檢也會呈陽性。好在經過清洗和其他處理後,含量會降低。科學家推測,這是因為罌粟籽在蒴果裡成長時,只是外面沾到乳膠,內部並不受影響。[6]

罌粟乳膠。圖/George Chernilevsky on Wikimedia Commons(CC BY-SA 4.0)

捷克與斯洛伐克一帶,常見的鴉片罌粟品種裡,[註1]11 個得在春季播種;另外 3 個則於冬季種植。[7]若在 2 月底到 3 月初,埋下前者的種子;大約同年 7、8 月,即可收成。[8, 9]2023 年 2 月,滂沱降雨在 Balints Pam 的田裡,匯成一潭大水窪。飲水和春芽引來了野生天鵝。[4]

-----廣告,請繼續往下閱讀-----

經濟損失

前述的種植、採收與清洗等方法、程序和注意事項,是給人類參考的;入侵Balints Pam家罌粟田的天鵝,才不管那麼多。牠們從根到花,一網打盡。[4]以成年的疣鼻天鵝(mute swan;學名Cygnus olor)為例,一隻體重約 11 到 19 公斤,每日食用的植物可達 4 公斤重。[10] [註2]牠們從零星造訪,到呼朋引伴,最後毒癮已深,對罌粟田趨之若鶩,流連望返。4 個月下來超過 200 隻天鵝,破壞了 5 公頃的田地,造成 Balints Pam 約 1 萬歐元的損失。更慘的是,由於以往牠們極少傷害作物,所以斯洛伐克的農業保險和國家補償,都不涵蓋此項。[4]

成群的天鵝來了…當然不只男版《天鵝湖》的陣仗。圖/New York City Center on Giphy

嗑毒的鸚鵡

全球許多地方均有合法的罌粟種植產業,例如:中南美洲、加拿大、澳大利亞、印度、中國、羅馬尼亞、匈牙利、伊朗、土耳其、西班牙、法國、英國、荷蘭、奧地利、德國、波蘭、捷克和斯洛伐克等。[6, 11]其中印度也有類似的案例,不過搞破壞的是鸚鵡。[12]

2015 年該國的某些罌粟田,開始有鸚鵡出現。2017 年政府為此發出警告。然而鸚鵡聰明絕頂,刻意降低行動的音量,並選在農夫劃開蒴果後進攻。當農地採用擴音廣播嚇阻,癮頭難戒的鸚鵡不僅沒嚇得鳥獸散,還拿出鳥窮則啄的決心,力拼到底。[12]且不論這驅趕成效有多失敗,為何同樣遭殃,斯洛伐克農夫 Balints Pam 卻沒有積極抵禦?

印度罌粟田裡的鸚鵡。影/Asian News International on Twitter

垂死的天鵝

天鵝在斯洛伐克屬於保育類動物,別說舉槍射殺,就連攪擾都算違法。因此,這則關於天鵝的故事,雖不如《天鵝湖》般淒美,但註定是齣悲劇。Balints Pam 田裡的天鵝疲倦、恍惚,飛不起來,而且即至 2023 年 6 月為止,已有幾十隻中毒身亡。[4]那麼現在該怎麼辦呢?

-----廣告,請繼續往下閱讀-----
抓天鵝?讓專業的來!圖/New York City Ballet on GIPHY

「農民應該申請下一季的豁免權,以便驅離鳥類。」自然保育部門的官員口氣事不關己:「早在那裏的就用手趕走,除此以外別無他法」。[4]事發 4 個月後,Balints Pam 終於獲得許可,請動保人員來把天鵝抓去勒戒。[13]

滯留斯洛伐克罌粟田的天鵝。影/DW News on Twitter

  

備註

  1. 品種(varieties)是種(species)下面的分類。[14]
  2. 網路上的中、英文新聞報導,似乎都沒指出種類;但是從參考資料 13 的影片看來,像是疣鼻天鵝。

參考資料

  1. Komárno“. (29 OCT 2014) Encyclopædia Britannica, UK.
  2. European Union. ‘Komárno’. Travel to Slovakia. (Accessed on 20 JUN 2023)
  3. Nitriansky kraj – Characteristic of the region’. (24 FEB 2023) Statistical Office of the Slovak Republic.
  4. In Slovakia, swans became “drug addicts” after feasting in a poppy field’. (11 JUN 2023) Baltics News, Estonia.
  5. Ramon A. (17 FEB 2021) ‘Climate change affects birds in Europe and North-America differently than in the Mediterranean, and could expose them to a climate trap’. CREAF el Blog, Spain.
  6. Carlin MG, Dean JR, Ames JM. (2020) ‘Opium Alkaloids in Harvested and Thermally Processed Poppy Seeds’. Frontiers in Chemistry, 8:737.
  7. Mikšík V, Lohr V. (2020) ‘The Czech Republic Producer of Breadseed Poppy’. Ministry of Agriculture of the Czech Republic.
  8. Farmers’. Sotiva Seed Ltd, Hungary. (Accessed on 20 JUN 2023)
  9. Košťál D, Čechovičová G. (07 MAY 2019) ‘Traditional and More Desired Poppy’. Grand Magazine, Slovakia.
  10. Invasive species: mute swan’. (15 JUN 2017) Environment and Climate Change Canada, Government of Canada.
  11. Yazici L. (2022) ‘Influence of different sowing times on yield and biochemical characteristics of different opium poppy (Papaver somniferum L.) genotypes’. Journal of King Saud University – Science, 34(8):102337.
  12. Felton J. (02 MAR 2019) ‘Opium-addicted parrots are wreaking havoc on poppy farms in India’. Business Insider, U.S.
  13. Curr M. (14 JUN 2023) ‘Poppy-addicted swans go cold turkey’. Deutsche Welle, Germany.
  14. Oxford University Press. ‘Variety’. Oxford Reference, UK. (Accessed on 21 JUN 2023)
所有討論 1
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

1

1
1

文字

分享

1
1
1
「來點海洛因止咳糖漿?」:過去化學合成的進步,今日藥物成癮的危機?——《食藥史》
聯經出版_96
・2022/09/06 ・2005字 ・閱讀時間約 4 分鐘

海洛因是半天然產物,是用嗎啡製造出來的,而嗎啡是鴉片的天然生物鹼,它也是半合成產物,是操弄天然物質的分子結構、增減原子而來,是所謂的「半合成」鴉片類藥物

海洛因為我國一級毒品,大家千萬不要嘗試。圖/envato.elements

現今多種止痛藥,都是鴉片的子孫!

一九○○年以後,很多實驗室追隨拜耳製造海洛因的腳步,製造自己的半合成藥物。它們從鴉片的生物鹼入手,比如嗎啡、可待因、蒂巴因等,想找出藥效的根源。

這些化學物質不容易研究,以嗎啡為例,它的結構相當複雜,由五個原子環連結而成。有些科學家設法分離出最小的活性成分,拆解成碎片,尋找這些分子的核心。接著他們擺布那些碎片,替換不同的原子,添加支鏈,讓它們變成半合成產物。

第一次世界大戰前後,化學家繼續尋找非成癮性止痛劑聖杯,製造並試驗數以百計的半合成製品,其中有極少數順利上市,有些甚至非常成功。

-----廣告,請繼續往下閱讀-----
20世紀,拜耳在藥局張貼的廣告。 圖/wikipedia

一九二○年,有人用可待因製造出氫可酮(hydrocodone),這種物質與乙醯胺酚(acetaminophen)混合後,就成為如今的止痛藥維可汀(Vicodin)。以類似方法操作嗎啡,就會得到氫嗎啡酮(hydromorphone),這款藥物在一九二四年取得專利,如今仍在使用,商品名是第勞第德(Dilaudid)。

一九一六年,化學家改造可待因,製造出氧可酮(oxycodone),這是一種藥效極強的半合成藥物,是波賽考特止痛劑(Percocet)的主要成分,緩釋型麻醉止痛藥奧施康定(OxyContin)裡也有它邪惡的身影。這些半合成鴉片類藥物都是有效的止痛劑,都能讓使用者精神恍惚,也都有成癮性。

也有化學家找出藥效驚人的成品,比如一九六○年,有個蘇格蘭研究團隊製造出一種又一種新型蒂巴因(也是鴉片的天然生物鹼)。有一天研究人員拿起實驗室工作台上的玻璃棒攪拌幾杯茶,幾分鐘後,喝了茶的幾名研究人員全都倒下,昏迷不醒。原來玻璃棒沾上他們正在研究的物質,這是一種超級半合成藥劑,效力比嗎啡強上數千倍。這種藥劑後來以止動劑(Immobilon)商標上市,用在飛鏢上麻醉大象和犀牛。

塗有止動劑的飛鏢,可以用來麻醉大象、犀牛和……。 圖/IMDb

科技帶來的隱憂:奧施康定濫用問題

半合成奧施康定(俗稱奧克西、棉花、踢客、豆子和土海洛因)已經是鴉片類藥物的今日嬌客,經常登上報紙頭條。全世界 80% 的供應量都銷往美國。

-----廣告,請繼續往下閱讀-----

它成功地將鴉片類藥物成癮問題,從鬧區街頭推向美國的中部小鎮。它無所不在,使用者遍布所有階層,以鄉村地區的貧窮白種人為主。

過去一個世紀以來,醫藥的進步延長全人類平均壽命,這個族群卻反向降低,主要原因正是奧施康定過量(與酒精和其他鴉片類藥物混用時極易發生),以及吞奧施康定自殺。

奧施康定為什麼這麼普遍,這方面的資訊非常豐富,只要看看新聞就知道。一百七十年前中國之所以淪為成癮國度、一八八○年代嗎啡之所以變成美國國家醜聞、一九五○年代海洛因之所以是最醜惡的藥物,問題的核心跟目前的奧施康定風波一樣,因為它們是鴉片類藥物

鴉片類藥物背後都有嚴重成癮問題。 圖/elements.envato

而每一種鴉片類藥物都非常容易成癮,沒有例外。

經過數十年的努力和數不清的失敗,半合成這條路始終沒有通往那個非成癮的神奇化學物質。於是研究人員採取下一步,尋找不同的方法。他們要的不是以嗎啡、可待因或任何屬於鴉片成分為基礎的藥物,而是某種全新的東西,某種結構完全不同、純粹合成的藥物。

-----廣告,請繼續往下閱讀-----

不可思議的是,他們確實找到幾種。這些新合成藥品之中效力最強的,比如吩坦尼(fentanyl)和卡吩坦尼(carfentanil),止痛效果不只跟嗎啡一樣強,甚至可能強上數百倍。只是這些藥物同樣容易上癮,無一例外。

——本文摘自《食藥史:從快樂草到數位藥丸,塑造人類歷史與當代醫療的藥物事典》,2022 年 8 月,聯經出版

所有討論 1
聯經出版_96
27 篇文章 ・ 20 位粉絲
聯經出版公司創立於1974年5月4日,是一個綜合性的出版公司,為聯合報系關係企業之一。 三十多年來已經累積了近六千餘種圖書, 範圍包括人文、社會科學、科技以及小說、藝術、傳記、商業、工具書、保健、旅遊、兒童讀物等。

0

1
1

文字

分享

0
1
1
蛇蠍心腸?才沒那麼壞!你所不知道的蠍毒妙用
科學月刊_96
・2019/11/24 ・2207字 ・閱讀時間約 4 分鐘 ・SR值 594 ・九年級

  • 文/嚴宏洋|國立海洋生物博物館特聘講座教授。

成語中的「蛇蠍心腸」是用來比喻某人心地的陰險及惡毒,蛇、蠍都是帶有毒液的動物,因而被擬人化形容人心的險惡。臺灣的毒蛇種類多,但是原生的蠍子只有不具毒性的「八重山蠍」和「斑等蠍」兩種。大家對蠍子的印象,多是從電視、報章和雜誌上來的,只知道蠍子是一種節肢動物,其尾部末端有一個內含毒液的毒囊與一支毒刺相連,用以螫擊獵物和禦敵。蠍子毒液的成份已被研究多年了,但最近的研究,卻發現它們有許多過去所意想不到的醫學用途⋯⋯

話說從頭──蠍毒也有殺菌的功能?

最近,來自墨西哥國立自治大學(Universidad Nacional Autonoma de Mexico)的研究人員卡加莫-諾利加(Edson Norberto Carcamo-Noriega)和他的團隊,採集一種棲息於墨西哥的蠍子——梁龍蠍(Diplocentrus melici)毒囊內的毒液。

令人驚訝的是,當毒液一曝露到空氣中,立即顯現出紅色及藍色兩種化合物。他們將這兩種化合物送到美國史丹佛大學(Leland Stanford Junior University)札爾(Richard N. Zare)教授的實驗室,經後續的質譜儀和核磁共振光譜學(nuclear magnetic resonance spectroscopy, NMR)進行分析,確定了兩種苯醌(benzoquinone,圖一)的存在。

不過,由於從每隻蠍子身上能採到的毒液量很少,無法直接進行生物檢定(bioassay)測試。幸好這兩種毒素是小分子化合物,因而研究人員得以在實驗室內,使用商業上的前驅物進行合成,再使用這些人工合成的毒素,進行結晶定序以確定其3-D結構。

-----廣告,請繼續往下閱讀-----

圖一: (A) 紅色化合物3,5-dimethoxy-2-(methylthio) cyclohexa-2,5-diene-1,4-dione (B) 藍色化合物5-methoxy-2,3-bis(methylthio) cyclohexa-2,5-diene-1,4-dione

接著,這兩樣合成物被送到墨西哥國家醫學及營養學研究所(Instituto Nacional de Ciencias Médicas y Nutrición)病理實驗室,由曼杜扎-圖基羅(Monserrat Mendoza-Trujillo)的團隊進行生物檢定測試。

他們先使老鼠感染金黃葡萄球菌(Staphylococcus aureus)及肺結核分枝桿菌(Mycobacterium tuberculosis),再用這兩種化合物投藥。結果發現,紅色成份可以殺死金黃葡萄球菌,其最低抑制濃度(minimal inhibitory concentration, MIC)為 4 μg∕mL;藍色化合物則是可以殺死肺結核分枝桿菌,MIC 亦為 4μg∕mL。對於具有多重抗藥性的「肺結核分枝桿菌株」,也有相同的殺菌效用,且不會傷害老鼠肺臟表襯細胞的活性。

是毒藥,也是良方!那些年他們研究的蠍毒

回顧過去 50 年,蠍毒的研究可以分為三個階段:

-----廣告,請繼續往下閱讀-----

被蠍子螫到會發生什麼事──

第一階段的研究,著重於患者被蠍子螫後的生理反應描述,醫界將中毒的反應分為三級:第一級有局部的疼痛,只要給予止痛藥即可;第二級反應包括心搏過速(tachycardia)、心律不整(arrhythmia)、呼吸困難(dyspnea)、無法控制的流淚、口吐白沫、嘔吐、高血壓或低血壓等生理反應。治療方式主要為施打抗血清加速代謝毒物或給予藥物抑制痙攣;第三級反應包括有:心臟衰竭、心因性休克(cardiogenic shock)和電解質失調等,這種病患要立即送入加護病房急救。

它們怎麼讓人中毒的──

第二階段的研究,著重於蠍毒內含物的結構分析及致毒的生理機制的探討。截至2010年,超過一千種的蠍毒蛋白結構已被定序。其中有許多種毒蛋白,都是胱胺酸的衍生物,但也有不屬於這一類的。它們共同的特徵是皆為小分子結構,分子量小於 3001 道爾頓(Da),且具有干擾細胞膜表面的鉀離子、鈉離子、鈣離子和氯離子的通道活性,從而造成被螫者中毒。

抑炎抗菌,反轉死神鐮刀──

第三階段的研究,則是從實用的角度探討蠍毒的醫療應用價值。例如從墨西哥阿茲特克蠍子(Hadrurus aztecus)分離出的抗菌蛋白(hadrurin)有殺菌的作用;而帝王蠍(Pandinus imperator,圖二)毒素中分離出的蠍毒(scorpine)有殺死細菌及瘧原蟲的效應。史密斯墨西哥蠍(Vaejovis mexicanus smithi)分離出的鉀離子管道阻斷分子,則有抑制發炎的作用等。而前述卡加莫-諾利加團隊最新發現的紅色及藍色化合物,含有抗生素作用,則代表目前研究者們努力的方向。

圖二:帝王蠍。(Pxhere)

-----廣告,請繼續往下閱讀-----

蠍子身上帶有毒液 為何不會毒到自己?

截至目前為止,有關蠍毒的研究仍有一個重要的題目尚未有研究者著手:既然蠍毒會干擾被螫動物細胞膜表面的鉀離子、鈉離子、鈣離子和氯離子的通道活性,為何這毒液不會對蠍子本身造成損害呢?

箭毒蛙的毒素與其受體突變是相當經典的研究內容。圖/wikipedia

以箭毒蛙(poison dart frog)為例,其會在體內儲藏毒液作為禦敵使用,帶有表巴蒂啶(epibatidine)毒的分趾蟾科毒蛙具備尼古丁乙醯膽鹼受體,而受體上有一個胺基酸序列的變異,使得蛙體內尼古丁乙醯膽鹼受體靈敏度的降低,因而不會與表巴蒂啶蛙毒結合。意即,蛙體內累積的毒素,並不會對毒蛙自己造成毒害。

但是,乙醯膽鹼是毒蛙存活的必要神經傳導物質,雖然受體上的突變可避免與累積的蛙毒結合,但也會降低與乙醯膽鹼的結合。因此,演化上的另一傑作,就是乙醯膽鹼受體上有另一個胺基酸序列的變異,使得它能與乙醯膽鹼正常結合,進行神經訊號的傳導。換句話說,受體上兩個胺基酸的替換,一方面可使毒蛙不被自己儲存的毒素殺死;而另一方面,卻又能維持正常的乙醯膽鹼神經傳導功能。

-----廣告,請繼續往下閱讀-----

蠍子體內是用哪種機制,以避免被自己體內儲存的毒液所害?筆者認為,這是未來值得研究的好題材。

延伸閱讀

  1. 維基百科:〈蠍子〉
  2. Jean-Philippe Chippaux, Emerging options for the management of scorpion stings. Drug Design, Development and Therapy , Vol. 6: 165-173, 2012.
  3. Edson Norberto Carcamo-Noriegaa et al., 1,4-Benzoquinone antimicrobial agents against Staphylococcus aureus and Mycobacterium tuberculosis derived from scorpion venom, PNAS, Vol. 116 (26): 12642-12647, 2019.

〈本文選自《科學月刊》2019年11月號〉

在這個資訊不被期待的時空裡,卻仍不忘科學事實至上的自由價值。

 

科學月刊_96
249 篇文章 ・ 3496 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。