分享本文至 E-mail 信箱
學術引用格式
MLA
APA
EndNote(.enw)

如何用實驗證明「廣義相對論」呢?──《宇宙的顫抖》

  • 文/李傑信│美籍華裔科學家,美國航空暨太空總署(NASA)太空任務科學家

「物質告訴時空如何彎曲,時空告訴物質如何移動」

──惠勒(John Wheeler)解釋「廣義相對論」

水星近日點進動示意圖 By Benutzer:Rainer Zenz @wiki

水星近日點進動計算,驗證廣義相對論

「廣義相對論」的第一個關鍵驗證,當然就是 1915 年 11 月 18 日愛氏(編按:本文簡稱愛因斯坦為愛氏)對水星軌道計算的「近日點進動」,其理論和觀測數據堪稱嚴絲合縫,無懈可擊。

1919 年 5 日 29 日在赤道上下的非洲西海岸和巴西東岸可觀測到日全食,緊貼著日全食背後的畢宿星團(Hyades,距地球 150 光年),正可作為愛氏光子在引力場彎曲的靶星。執英國天文物理牛耳的艾丁頓(Arthur Eddington,1882-1944),為了加雙保險,組織了兩個觀測隊,分別到赤道大西洋西、東兩岸地區觀測。日食時刻,兩地及時撥雲見日,期間收集的底片數據經過六個月的分析,終於在 11 月 6 日肯定了「廣義相對論」1.70 角秒的預測值。當時僅在行內有名氣的愛氏,在消息公布隔日就名揚世界,成了人類有史以來最出名的科學家,甚或是最出名的人類。

名滿天下後,小兒子愛得華(Eduard Einstein,1910-1965) 在後花園問他到底做了什麼事才這麼有名?愛氏指著樹枝上的小甲蟲回答:我是第一個說出來牠是在曲面上爬的人!兒子回了一聲: 哦?!

阿雷西博發現「脈衝星──中子星」雙星系統

1974 年, 泰勒(Joseph Taylor,1941-)和他的博士生胡爾塞(Russell Alan Hulse,1950-)使用波多黎哥阿雷西博觀測站(Arecibo Observatory)305 公尺直徑的無線電望遠鏡,首次發現了 PSR B1913+16 脈衝星-中子星雙星系統,並測量出雙星系互繞軌道有衰變現象,後以「廣義相對論」證實軌道的衰變來自雙星系統的引力波輻射能量的消耗,使互繞週期逐漸變短,造成兩星會在三億年後相撞,理論和觀測的軌道衰變數值比例吻合到 0.997(圖18)。愛氏的理論預測引力波在四維時空中以光速傳播,但振幅異常微弱。這個觀測間接提供了引力波存在的證據,泰勒和胡爾塞獲 1993 年諾貝爾物理獎。

圖 18 脈衝雙子星 PSR B1913+16 互繞軌道因引力波輻射能量消耗而衰變,使互繞週期逐漸變短,造成兩星會在三億年後相撞。「廣義相對論」理論和觀測數值比例吻合到 0.997。(Credit: Data from J. M. Weisberg and J. H. Taylor, Relativistic Binary Pulsar B1913+16: Thirty Years of Observations and Analysis, July 2004. By Inductiveload [Public Domain], via Wikimedia Commons

火星實驗驗證「引力場」

1976 年,人類以兩架「維京人號」(Viking)首次登陸火星, 主要任務是尋找外太空生命,附帶也做些別的實驗如「廣義相對論」的檢驗。這類實驗主要是測量電磁波通過太陽引力場彎曲的四維時空時,是否緊貼著曲面飛行。像在地球上 A 和 B 兩點直線距離   100  公里,約一小時車程。但如果兩點間有山丘阻擋,公路得彎曲蛇行,因為距離的增加,車程就要超過一小時了。

同年 11 月下旬,火星進入太陽背面,和地球形成「合」(conjunction)的位置。在 25 日那天,火星和地球連線剛好切過太陽外緣,一束雷達波由地球出發,經由火星上的維京人號「詢答機」(transponder)回應,再傳回地球。這束雷達波通過太陽強大的引力場時,因為時空被彎曲,雷達波得順著曲面走,若依「廣義相對論」預測,它所需的傳播時間應會增加。

這次的實驗,雷達波雙程傳播所需時間(來回距離有五個天文單位,約二千五百秒),比沒有經過太陽引力場所需的傳播時間,多出了二百五十個百萬分之一秒,實驗和愛氏理論的符合度在 99.5%。在這之前,科學家也做過類似的實驗,例如通過水星和金星地表的雷達波反射,和使用「水手號」(Mariner)6、7、8 三艘太空船的「詢答機」,數據雖不如「維京人號」精確, 但實驗和理論的符合度也都在 95 至 98% 之間。

引力探測儀、卡西尼──惠更斯太空船

1976 年還有另外一個實驗,旨在檢測在不同強度的引力場時鐘變化。「引力探測儀 A」(Gravity Probe A,GP-A)於 6 月18 日由美國維州東岸發射,抵一萬公里高度,在軌時間為一小時五十五分鐘。實驗所使用的時鐘精確度為 1,000 萬億分之一,即一億年僅有二秒誤差。實驗結果顯示,理論和實驗數值的符合程度為 99.993%。

1997 年 10 月 15 日,美、日、義三國合作發射了卡西尼-惠更斯(Cassini-Huygens)太空船,經 7 年航行後於 2004 年 12 月25 日抵達土星,其主要任務為土星軌道探測和登陸土星最大衛星「土衛六」(Titan),也順便以比「維京人號」更長的距離,再次檢測電磁波通過太陽引力場的時間延遲效應。

圖 19 的藝術家示意圖中,卡西尼太空探測儀發出的無線電波,在通過太陽引力場時, 因四維時空的彎曲,造成無線電波延遲抵達地球效應。實驗數據和理論預測的吻合達 99.998% 精確度。

圖 19 卡西尼太空探測儀發出的無線電波,在通過太陽引力場時,因四維時空的彎曲,造成無線電波延遲抵達地球效應。實驗數據和理論預測的吻合達 99.998% 精確度。(Credit: NASA/JPL-Caltech)

「座標系拖曳」效應

「引力探測儀B」在繞極太陽同步軌道一年,四個獨立的陀螺所發生變化。橫軸顯示的是「座標系拖曳」效應,實際在軌道上測量到的平均值為每年 37.2 毫角秒,理論值為 39.2 毫角秒。 37.2 毫角秒中近三分之一的變化來自時間軸的拖曳效應。陀螺儀在地球引力場曲度中的變化較大,實際在軌道上測量到的平均值為每年 6.601角秒(理論值為 6.6061角秒),前文壇到的光在太陽引立場彎曲 1. 70 角秒的近 3.8829 倍。陀螺儀設計的精確度為一萬分之一。(Credit: Francis Everitt/GPB/NASA

2004 年 4 月 20 日,美國發射了「引力探測儀 B」(Gravity Probe B,GP-B),主要任務是檢驗愛氏理論中的引力場「座標系拖曳」(frame dragging 或 Lense-Thirring)效應,比如因地球自轉,緊貼著地表的四維時空座標,就會被地球拖著一起轉,產生引力場渦流現象。

這個理論,專家們花了好大的力氣,才從相對論中挖掘出這塊瑰寶。而 NASA 要經過 42 年研發,耗資七億七千萬美元,方能發展出四套人類有史以來最精確的陀螺儀(gyroscope), 精確度得以在 10 英里外量得一根頭髮的厚度。陀螺儀的核心是個乒乓球大小的水晶體,如將其放大到地球體積,球面的高低差不超過 3 公尺,全宇宙中,只有中子星比它更圓。

除開「座標系拖曳」效應,「引力探測儀 B」也測量陀螺因地球引力場曲度而造成陀螺方向的變化。因地球的引力場很小,「座標系拖曳」效應微弱,GP-B 的陀螺儀以飛馬座(Pegasus)的 HR8703 星為參考方向,在地球軌道上轉一年,僅得 37.2 毫角秒(mili arc seconds, mas)(理論值為 39.2 毫角秒)變化,但這個數據在兩個標準值的置信度(confidence level,CL)下誤差為 19%,相當大,說明這個實驗真難做,也永遠不會有別的政府肯再花錢去複製這個實驗。

陀螺儀在地球引力場曲度中的變化較大,為每年 6.601 角秒(理論值為 6.6061 角秒),是上文談到的光在太陽引力場彎曲 1.70 角秒的 3.8829 倍。陀螺儀精確度為一萬分之一(圖 20)。

GP-B 主要研究員艾佛銳特(Francis Everitt,1934-)與我私下交談中告知,37.2 毫角秒中近三分之一的變化來自時間軸的拖曳效應。

「廣義相對論」包羅大尺度宇宙知識

廣義相對論解釋了質量與時空的關係。By Mysid @wiki, CC BY-SA 3.0,

寫到這裡,我得感嘆一下,如果沒有愛氏引力場的相對論,人類接到從遙遠宇宙傳來的訊息,就淪落到左一個不知道、右一個看不懂,這該有多慘。當然有人會說,這個「共變」張量引力場相對論理論,遲早會被聰明的人發明。但那可能是幾十年甚或幾世紀以後的事。

我的一生若沒擁有愛氏相對論的知識,會顯得無比的貧瘠和蒼白。愛氏的場方程像一座堆滿了寶物的宮殿,包羅了幾乎所有大尺度的宇宙知識,有些寶物愛氏自已進一步挖掘,比如光在引力場中的彎曲和紅移、水星軌道和引力波等的預測與計算等。有些意想不到的內涵,則由別人努力尋找出來,如黑洞和引力場透鏡等。

尤其是黑洞,在愛氏發表他的 11 月 25 日「會議記錄」論文後,史瓦西隨即在 12 月 22 日就導引出愛氏場方程中非自旋黑洞精確的數學閉合解答。愛氏剛開始僅把它們當成數學的結論,並無實際物理意義,但經過了百年驗證,這些不違背數學結論的好奇預測,竟也在宇宙到處存在,遍地開花。愛氏全面「共變」張量的場方程,是他贈與人類的一筆巨大的智慧財富,大家只管盡情享用。

 

 

 

本文摘自《宇宙的顫抖:談愛因斯坦的相對論和引力波》,台大出版中心出版。