2

0
0

文字

分享

2
0
0

星系考古學—龍之碰撞

臺北天文館_96
・2012/03/07 ・753字 ・閱讀時間約 1 分鐘 ・SR值 522 ・七年級

-----廣告,請繼續往下閱讀-----

NGC 5907是個位在天龍座方向的螺旋星系,星系的銀暈中有由恆星組成的巨大環圈構造。經由中國科學院及巴黎天文臺的科學家王建嶺(Jianling Wang)等人的研究,利用電腦模擬20,000~600萬個氣體質點的流體力學的成果,認為這個巨大的恆星環構造可能是80~90億年前一場龐大的星系碰撞事件造成的。

質量相當的星系碰撞事件可能會影響星系的形狀,而且或許半數左右的螺旋星系都是在過去90億年間,經由這種碰撞方式形成的。NGC 5907應該也曾經歷過這樣的星系碰撞事件,但是由於這個星系幾乎沒有銀核(bulge)凸起的部分,與一般經由碰撞合併而形成的典型螺旋星系型態不同。

事實上,經過深度觀測後的NGC 5907,它的銀暈中居然含有一個非常巨大的環狀結構,而後發現這個環狀結構由恆星流所組成,整道恆星流的長度長達150,000光年。先前其他研究認為這個環狀結構應該是大型星系捕捉併吞一個小型衛星星系後,整個衛星星系被分解剝離之後的結果。

王建嶺等人則假設這個環狀結構是質量相當的星系在約80~90億年前發生碰撞之後的遺跡,之後利用巴黎天文臺中的32核心和196核心電腦,以及北京國家天文臺(NAOC)中680核心超級電腦,進行每秒50兆次的數值模擬運算,驗證這個假設的正確性。模擬結果顯示:若衛星星系質量小於1/12倍主星系質量,那麼就不可能形成這樣的結構。此外。NGC 5907和環狀結構的前身星系都含有非常豐富的氣體,至少佔了60%以上。

-----廣告,請繼續往下閱讀-----

不過,王建嶺等人自己也指出:他們並不十分確定這個模擬結果是對的,因為這個模擬預測除了已觀測到的恆星環之外,應該還會產生另一個更大、更暗的環狀構造。這點就有待未來繼續做深度觀測,看看是否可觀測到這個預測中的更大但更暗的環狀構造,便知他們的模擬工作是否成功。

資料來源:Archaeology of galaxiesThe Dragon clash[2012.02.16]

轉載自台北天文館之網路天文館網站

文章難易度
所有討論 2
臺北天文館_96
482 篇文章 ・ 38 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

3

33
6

文字

分享

3
33
6
【2021 年搞笑諾貝爾:物理獎】AT 力場全開!如何在擁擠的車站通道中不被別人撞到?
超中二物理宅_96
・2021/09/30 ・6652字 ・閱讀時間約 13 分鐘

並沒有,但朗之萬公式是今天的主角。

這兩年全世界都被 COVID-19(特殊嚴重傳染性肺炎、新冠肺炎、武漢肺炎)疫情搞得雞飛狗跳。除了疫苗之外,「口罩、洗手、社交距離」堪稱「物理防疫三神器」。我們剛度過了第二個疫情下的中秋假期,看到各大交通轉運樞紐人山人海的群聚,不禁讓人擔心,擠成這副德性,樣怎麼保持社交距離啊?

最近頒發的 2021 年「第 31 次的第一屆」搞笑諾貝爾物理獎,也跟「社交距離」有關:在行人十分擁擠的通道上,大家如何互相閃躲以避免相撞,並且順利通行?

疫情前,大家在生活中碰到這種情境的經驗應該很頻繁,反正就順著人流走,有人擠過來過互相閃一下(然後心裡暗譙一下…有時候啦),經過一個不怎麼舒服的過程後,通常能順利通過。

但是這種在生活中看起來簡單的過程,有沒有辦法以物理學來理解呢?

-----廣告,請繼續往下閱讀-----
圖/Pixabay

物理學的主流是「化約主義」:希望用最簡單的理論來解釋各種現象。例如古典物理中用一個牛頓第二定律「F = ma」來解釋物體如何運動,用馬克斯威爾的四條方程式解釋一切電、磁與光的現象。物理學家的終極目標就是找出可以用一條方程式理解整個宇宙的過去、現在與未來的「萬物理論(The Theory of everything)」,所謂的萬物,當然是包含「人類行為」在內囉!

但是其他領域的學者可不吃這一套!比如說「人類的社會行為」,牽涉到神經科學、心理學、社會學等領域,每個領域都十分複雜,怎麼可能用物理學的化約主義來研究呢?

物理學家才不管這些,先做了再說!荷蘭 Eindhoven 科技大學、加州州立大學長灘分校以及義大利 Vergata 大學組成的研究團隊,探討了「擁擠的車站內通道的行人動力學」。其中加州州立大學的成員,是來自台灣的女科學家 Chung-min Lee 教授。

遊戲機變成高效的姿態感測器!

研究者將四部微軟電視遊樂器 X-BOX 用來捕捉玩家身體姿態動作的影像捕捉週邊設備「Kinect」裝設在 Eindhoven 火車站的通道上方,用以記錄通過這個通道的人群動態。這條通道一頭是市中心,另一頭則是巴士總站。

圖一:(a) Eindhoven 車站的通道平面圖,以及 Kinect 感測器(K)配置。(b) 實景照片,上方白色橫樑可見四支 Kinect 感測器。

利用這四部 Kinect 拍攝到的行人影像,搭配影像辨識以及追跡演算法,可以同時標定每個進入畫面的行人,並且一路追蹤其軌跡直到離開畫面為止。整套系統從 2014 年 10 月到 2015 年 3 月,不間斷的記錄了六個月的時間,一共得到大約 500 萬人次的行人軌跡。

-----廣告,請繼續往下閱讀-----

數據太複雜?別擔心,物理學家最擅長「化約」了

這些紀錄是貨真價實的複雜人類行為:有的是勇往直前一直線,有些左右搖擺,有些因為某些原因走到一半掉頭,也有真的就跟別人撞成一團的…物理學家如何發揮「化約主義」本色,將這些複雜的行為化簡成可以分析的數學形式呢?

研究團隊採取的方法是用將這長達六個月,累計數百萬行人來來去去的影片轉換成一個由一組「節點」(node)以及節點與節點之間的連線(edge)所組成的「圖」(graph)。

圖中每個節點都代表一個行人以及通過通道時的相關資訊,如行徑方向與軌跡長度。如果兩個行人(節點)在同一時間出現在同一畫面中,則這兩個節點就用線連起來,這條線的資訊包含它連結了哪兩個節點、兩節點間最大與最小的距離、同時在畫面上的時間等等。

圖二:將影像轉變為圖形,每個節點(以帶數字的圓圈表示)都是一個行人,如果兩個行人同時在鏡頭裡就會有一條連線。(a) 從影像轉來的原始圖形示意圖,這個圖可以分成四個子圖。(b) 把雖然有同時入鏡,但是距離太遠,不太可能會互相影響的兩個節點間的連線去掉(以虛線表示),讓圖形更進一步簡化。(c) 「只有一條線連結兩個節點」的子圖。(d) 行進方向相同,不需考慮迴避碰撞,所以把連結拿掉。(e) 最後剩下的「雙節點子圖」。圖/參考文獻 1

假設一個情境如下(請拿出您的耐性,搭配圖二 (a) 看):天剛亮時第 ① 個行人被攝影機捕捉到,接著第 ② 個行人跟在①後面進來,① 離開畫面後,③ 跟 ④ 分別從兩側走進來,在 ② 跟 ③ 離開畫面後,一班火車進站 ⑤⑥⑦ 先後進入畫面,然後人都離開了,中間的空檔只有 ⑧ 獨自通過,接著又有一班火車進來,⑨~⑫ 一起入鏡,最後一個離開鏡頭的 ⑫ 出鏡前瞬間 ⑬ 進來了,⑫ 離開後,⑭⑮ 進入,接著 ⑬⑭⑮ 先後出鏡,然後 ⑯ 獨自通過。

看起來有點煩,對不對?

不過轉換成圖二 (a) 的表示法,是不是就一目了然了呢?這就是「化約」的威力。即使如此,六個月累積下來的圖,上面會有 500 多萬個節點,節點間的連線數目可能上千萬,還是非常複雜。不過我們可以把這一大張圖拆成幾個「子圖」(subgraph):每個子圖包含的節點可以靠彼此的連結連成一片,不同子圖之間則完全沒有連線。

-----廣告,請繼續往下閱讀-----

以圖二 (a) 為例,可以分成四個子圖:一、節點 ①~⑦;二、節點 ⑧;三、節點 ⑨~⑮;四、節點 ⑯。只有子圖內部的節點可能彼此有交互作用。

但是即使把整張幾百萬個節點的超大圖拆成許多節點數較少的子圖,可能還是很難分析,像圖二 (a) 的「子圖一」包含了七個節點,要分析這七個行人怎麼互動,怎麼彼此調整行進的路線,還是太複雜了。考慮實際狀況,可以再進一步簡化:

兩個人即使同時出現在畫面中,如果距離很遠或接觸時間很短,幾乎不可能影響彼此,就把這兩人之間的連線拿掉,比如前面的例子「⑫ 出鏡前瞬間 ⑬ 進來了」的情形,就可以拿掉連線。如圖二 (b) 所示,這種太弱的連線(以虛線表示)拿掉後,會把圖形分成更多、更小的子圖。以圖二 (b) 來說,變成 8 個子圖,其中最大的也只有四個節點。

接下來,這篇論文只探討最簡單的兩種子圖:只有一個節點的,如圖二 (b) 中的 ⑧、⑬、⑯,以及兩個節點的 ①②、③④、以及 ⑭⑮,如圖二 (c)~(e)。其中 ①② 為同方向,不需要迴避相撞,所以也把這條連結拿掉,就變成各自落單的單一節點子圖了。

-----廣告,請繼續往下閱讀-----

實際上「單節點子圖」一共有 47122 個,「雙節點子圖」一共有 9089 個。

A 編按:圖2 (a) 上「節點上的數字」代表「進入鏡頭的順序」,「節點間的連線」代表「兩人是否同時出現在同一畫面」,透過這種方式組成的圖 2 (a),可以明確區分出那些序列是有可能相撞的。

接著再細部分析每個連線,如果距離太遠或接觸時間太短,就不可能產生碰撞或閃避行為,將符合此條件的連線設為「虛線」,形成圖 2 (b)。

最後考慮圖 2 (b) 內,每個有實線連結的節點行徑方向,如果是兩節點的行徑方向相同,就不會發生碰撞或閃避行為,可以排除不用分析,得到圖 2 (e) 的圖。

雖然我們物理學家經常吹噓物理很厲害,不過事實上我們能夠解出精確答案的力學問題,只有「一個粒子的運動」跟「兩個彼此交互作用的粒子的運動」而已,碰到「三個彼此交互作用的粒子的運動」就沒輒了,只能有近似解或是用數值模擬,所以才會有像「三體」這種科幻作品的出現啊!

三個、四個、五個…粒子的問題物理學家不會算,但是當粒子數目成千上萬或更多時,「熱力學」就登場了,物理學可以回答「很多粒子的平均行為」,並且拿來解釋熱、溫度與壓力等現象。

回歸正題,人類行為顯然比質點複雜太多,所以先從「一個人」跟「互相作用的兩個人」的行為模式著手,以此為基礎來探討「很多人的集體行為」,是相當合理的策略。

行人的軌跡其實不是直線,曲折的像是水裡的灰塵

先從最簡單的「一個人的動力學」開始,在沒有其他人的影響下,行人的軌跡大多會呈現頻率約 1 Hz(每秒一次)的小幅度「抖動」,這個很容易理解,因為這大約是人類的步伐頻率;除此之外,少數軌跡也會有比較大的晃動,甚至轉頭往回走的情形。研究團隊發現,這個行為模式跟「布朗運動」——把花粉、灰塵這些細小的物體放在水中,會被亂跑的水分子撞來撞去也跟著亂跑——類似。

-----廣告,請繼續往下閱讀-----

既然如此,就用解釋布朗運動的「朗之萬」方程式(Langevin equation,對,就是那位跟偉大的瑪麗‧居禮傳出緋聞的朗之萬)試試看吧!

圖/Pixabay

所謂的朗之萬方程式其實也很簡單,就是在物體「本來的運動傾向」之外,加上「流體的阻力」,以及「隨機的力量」。

什麼是這些行人「本來的運動傾向」呢?因為這是一條連通兩端的通道,不管是為了節省力氣或趕時間,絕大部分的人都是沿著平行通道的方向從一端以最短距離走向另一端,而不會斜著走;其次是多數人用正常速度走,但也有相當比例的人因為趕時間是快走或小跑步,其平均速率分別為每秒 1.29 與 2.70 公尺(換算成時速是 4.64 與 9.72 公里);最後就是兩個方向都有人走。以上這些「運動的傾向」,可以寫成牛頓第二運動定律的方程式。

接著是「流體的阻力」,當行人開始偏離原來的行進路線時,會受到一個與垂直原方向的速率成正比的阻力,要將這個人「推」回原來的路線。

各位在像台北車站這類擁擠的走道上時可能有注意到:雙向行人會構成「層流」的結構,走同一個方向的人自動排起來列隊前進,這是阻力較小,也會比較省力的走路方式,偏離你所在的隊伍,就可能跟隔壁的隊伍發生摩擦甚至碰撞而難以通行,所以除非有強大的改變路徑的原因,不然我們自然就會回到原來的路徑上。

最後就是「隨機的力量」,我們周圍的其他行人隨時都有狀況,停下來拿東西的、路線突然歪掉的、腳扭了一下、忘記東西回頭的…我們必須眼觀四面,耳聽八方,隨時對這些狀況做出反應,以避免可能的衝撞,同時也造成路徑的改變。

寫下了運動方程式後,就可以在電腦裡面進行模擬,然後來跟攝影機拍到的行人真正的行為比較。結果出來了,人類的行為,可能沒有比空中的灰塵,水中的花粉更高明……

-----廣告,請繼續往下閱讀-----
圖三:行人在 (a) 平行通道人流方向速率、(b) 垂直於人流方向的速率、與 (c) 偏離路徑的程度的統計分布。實際觀察結果(紅點)與電腦模擬數據(黑圈)的比較。 圖/參考文獻 1

圖三為「一開始朝著巴士站方向走」的那些「單一節點」(沒有受到旁人影響)的運動狀況統計,紅點是攝影機拍到的真實行為,黑色圈圈是朗之萬方程式模擬的結果。

圖三 (a) 為平行通道方向的速率分布(本來的運動傾向),可以發現真實行為與模擬結果相當吻合!最多人是用秒速 1.29 公尺前進,有少數人是用跑的,所以在超過秒速兩公尺處也有一個小高峰,還有極少數的人會往回走(速率是負的),唯一沒抓到的特徵是在速率為零(停止)的附近。因為行人偶爾會因為種種原因而在路上停下來一段時間,但是布朗運動中的微小粒子只有在轉向的瞬間才會測得速率為零。

圖三 (b) 為垂直於行進方向的速率(流體的阻力),圖三 (c) 為偏離原來行進路線的距離(隨機的力量),兩者也都相當吻合。

結論是:如果行人的密度相當稀疏,不需要互相閃避時,行人的行為基本上跟水中的花粉進行的布朗運動很類似,可以用朗之萬方程式模擬出來。

接下來,就是考慮「兩個人互相靠近,需要互相迴避,但附近沒有其他人攪局」,也就是如圖四的狀況。

圖四:兩個互相接近的行人彼此閃避的示意圖。灰色實線是各自原來的預定路徑,黑色實線是真正走的路線,會有點隨機擾動,但基本上跟預定路徑同方向,(i) 發現彼此可能相撞之後,開始調整路徑,改走虛線,到 (ii) 時兩者靠得最近,此時距離為 d,(iii) 擦身而過後進入互相遠離,又會把路徑調整到與通道平行的方向,但是跟原來的預定路徑有個平移。 圖/參考文獻 1

圖四中互相靠近的兩人,原本的預定路徑,也就是兩條灰色實線的距離太近,如果堅持往前走就會撞在一起,所以靠近到某一個距離就會開始調整方向,把路徑距離拉開避免碰撞(現實中還會有兩個人很有默契的往同一邊閃、再同時換邊、再同時換邊……一直閃不開的爆笑場景,這篇論文中倒是沒有討論),然後再互相遠離。

-----廣告,請繼續往下閱讀-----

由於真實的路徑歪七扭八,加上每個人開始轉彎的時機也不盡相同,所以我們再度發揮「化約主義」的精神,把圖四簡化成圖五。

圖五:AB 兩人互相接近、閃避、遠離的簡化示意圖。 圖/參考文獻 1

我們採用直角座標系,把通道方向(也是人流移動的分向)定義為 X 方向,垂直 X 的為 Y 方向,當大家都沿著 X 方向移動時,「會不會碰撞」是由 Y 方向的距離所決定。當兩人進入畫面時,兩條路徑的距離為 Δyi,兩人擦身而過時的距離為 Δys,遠離後的路徑距離為 Δye

在物理模型方面,得在「一個人的朗之萬模型」裡面加上「兩個人的交互作用力」,這個力分為兩部分:

  1. 「遠遠看到前方有人走過來該準備閃了」的「長程力」
  2. 「靠快撞到了趕快閃」的「短程力」

兩者都可以用數學函數寫出來加進方程式,成為「兩個人的朗之萬模型」。

研究團隊量了所有「雙節點子圖」的 Δyi,Δys,Δyie;同時也以「兩個人的朗之萬模型」在電腦上模擬了行人的行為並且量測了這三個數值,然後畫了 e(Δys) 對 Δyi 的關係圖,其中 e(Δys) 為對應於同一個 Δyi 的所有 Δys 的平均值;以及 e(Δye) 對 Δys 的關係圖,分別為圖六 (a) 與 (b)。

再一次,真實世界的行人行為(紅點)與電腦模擬(虛線)相當吻合。此外,這個模型連「發生相撞」的頻率都可以預測得很準。難道人類行為真的跟隨波逐流的布朗運動一樣?!

圖六:(a) 兩個人擦身而過時的距離平均值與起始路徑距離的關係。(b) 兩人互相遠離後的路徑距離平均值與擦身而過時的距離的關係。紅點為真實世界的人類行為,虛線為電腦模擬結果,通過原點的點線為兩人都不改變方向直直往前走的情形。 圖/參考文獻 1

每個人都有 AT 力場,半徑 1.4 公尺

值得注意的是,當 Δyi 較小時,互相走近的兩人會開始調整方向,把距離拉開,讓兩人擦身而過時,不至於撞到(Δy > 0.6m)。有趣的是,這個現象從 Δyi < 1.4m 就開始發生,在 0.6m~1.4m 這個範圍內,即使不改變方向,也不會撞到,但是這個距離已經夠近,讓人感到「個人領域受到侵犯」的威脅,而開始迴避對方,把距離拉開。

也就是說,在擁擠的通道中,「讓人安心的社交距離」是 1.4 公尺(我是很想把它叫做「AT-Field 絕對領域」啦…),我們不太想讓陌生人靠近到這個距離以內。要提醒各位的是,這是「一大堆人的行為」的平均值,並不是每個人都是同一個數值。

雖然說得到的是「搞笑諾貝爾獎」,不過這個研究過程可是很嚴謹的,一點也不搞笑。這個研究也說明了,個人的想法跟行為很複雜,人與人之間的互動很複雜,但是一大堆人的行為平均起來,可能會呈現簡單的模式,可以用物理學的「化約主義」方法,來理解「人類群體的行為」。

當然這還是相當初步的研究,而車站裡移動的人潮,也不過是人類的社會行為中一個非常簡單的現象,所以想用物理學的方法論,來研究社會科學,還有很長的路要走(而且社會科學家可能也會不高興)。

但是在物聯網越來越盛行的今日,各式各樣的人類活動被轉換成大量的資料累積下來,可以預見研究人類行為的方式會越來越多樣化。到最後會不會出現像艾希莫夫的科幻經典「基地系列」中,可以預知人類未來命運,並且扭轉其方向的「心理歷史學」呢?讓我們繼續看下去——

※ 更多搞笑諾貝爾的相關介紹,請到泛科專題【不認真就輸了!搞笑諾貝爾獎】

參考文獻

  1. Alessandro Corbetta, Jasper A. Meeusen, Chung-min Lee, Roberto Benzi, and Federico Toschi, Physics-based modeling and data representation of pairwise interactions among pedestrians, Phys. Rev. E 98, 062310 (2018).
所有討論 3
超中二物理宅_96
8 篇文章 ・ 16 位粉絲

0

1
0

文字

分享

0
1
0
大爆炸是宇宙的起源嗎?它有沒有可能在別的地方發生?——《關於夜空的 362 個問題》
PanSci_96
・2019/07/24 ・1994字 ・閱讀時間約 4 分鐘 ・SR值 517 ・六年級

-----廣告,請繼續往下閱讀-----

編按:本文摘自《關於夜空的 362 個問題》,蒐集了英國最長壽科普節目《仰望星空》的觀眾提問。所有你對太空宇宙會有的疑問,都將在本書中為你解答。本節討論的是「多重宇宙與額外維度」。

大爆炸有沒有可能在不同的地方發生過?

大爆炸可能曾在別處發生過,有些科學家會說可能性很高。有些高度懷疑論的理論認為,以大爆炸的本質來說,這應該曾經發生過很多次,甚至可能是無數次。有很多宇宙的這個概念稱為「多重宇宙」,其他這些擴張中的宇宙可能和我們的宇宙很不一樣,有著不一樣的物理法則。也許我們的宇宙是唯一一個條件足以讓原子──更別說恆星、行星、生命──得以形成的宇宙。

也許我們的宇宙是唯一一個條件足以讓原子──更別說恆星、行星、生命──得以形成的宇宙。圖/pxhere

想像一個二維平面的宇宙,大約就像一張紙那樣,此時如果有另外一個平行的二維宇宙存在它的上方或下方有點距離的位置,那麼在第一張紙上的人,永遠不可能知道還有第二張紙存在。在真實的三維宇宙裡,另外一個宇宙不會存在於傳統觀念的「上面」,而是可能存在於某段距離之外的第四個空間維度。

-----廣告,請繼續往下閱讀-----

就算我們的宇宙一直以三維在擴張,也永遠不會碰到另外一個宇宙,就像兩張紙可以一直變大,但永遠也不會碰到彼此。

如果真的有另外一個宇宙,我們對於宇宙末日的預測會有什麼改變?會不會因為其他的宇宙可能會和我們的宇宙「相撞」,而有不同結果?

這要看是什麼樣的相撞。如果其他的宇宙和我們居住的宇宙一樣,以三維的方式擴張,那麼兩者可能會以「傳統」的方式相撞。這麼接近我們的一個宇宙所帶來的影響,也許可以從它對我們所能見到的最遙遠的天體的影響來判斷,不過目前還沒有看過這樣的跡象。

這暗示那個宇宙整體的特質,可能和我們所能見到的區域的特質不一樣,而這些特質是會影響宇宙的最終命運的。

另外一個宇宙可能是在第四維的空間中和我們分開,這是個滿難想像的概念。這相當於兩張平行攤開的紙,只是兩者間的距離很小。霍金在更高維度空間的理論提到,三維的宇宙是「膜」(branes,我相信是從薄膜[membrane〕這個字而來的)。有一個理論是這些「膜世界」間的撞擊造成了大爆炸,不過目前還沒有辦法能證明或是推翻這個理論。

在量子宇宙學的多重宇宙解釋裡,有多少宇宙裡會是青少女偶像明星麥莉擔任美國總統?

無窮宇宙,在宇宙中存有大量的可觀測區(有著紅色十字中心的紅圈),我們的「宇宙」不過是其中的一個可觀測區而已。圖/wikipedia

-----廣告,請繼續往下閱讀-----

關於宇宙的解釋裡,有一個可能是我們只是住在其中一個宇宙而已。事實上,的確有可能有數不清的宇宙。在數不清的宇宙裡,隨時隨地都會有各種可能的組合發生。也許在某些宇宙裡,莎士比亞的所有作品都是猴子在打字機上隨便打字而完成的;也許在其他的宇宙裡,麥莉真的就是美國總統。這些事發生的可能性高低,會影響它們發生的次數有多少,不過還是有可能發生過無數次──就算是無數次的一小部分也還是無數次!這是不是很可怕的想法?

你覺得除了大爆炸之外,關於宇宙的起源有沒有其他的科學解釋?

我認為大爆炸理論有非常穩固的科學證據為基礎,不會被推翻。然而,我們的宇宙學模型還是有其他部分的基礎沒那麼穩。比方說暗物質就還沒有真的被找出來(不過在這本書裡這樣寫有點大膽,因為在準備出版的這段時間裡,這方面的積極尋找似乎愈來愈接近成果)。因為沒有觀測結果能證明它存在,所以也很難認為這個理論可以被證實,不過和其他相關的理論相比,關於暗物質存在的證據當然還是比較多。

沒有觀測結果能證明暗物質存在,所以也很難認為這個理論可以被證實。圖/wikipedia

暗能量很有可能會成為科學進展的犧牲品。我之所以會這樣評估,主要是因為我們只能說,我們認為有某個東西造成了影響,但我們不知道那是什麼東西。

-----廣告,請繼續往下閱讀-----

很重要的一點是,科學界不會躲到角落,對其他的可能視而不見。在過去數百年裡,某些科學進展上產生重大的延誤,都是因為有些人拒絕接受新想法。就像商業界一樣,競爭會帶來很多好處。科學家用不同的方式來詮釋結果,因此會支持相反理論的意見,通常也會支持新的實驗。最重要的關鍵是,不能被個人的感受所影響。只是因為你比較喜歡這個理論,或者因為這樣可以讓事情比較簡單,就相信某些事情是真的,不是從事科學研究的適當態度。

——本文摘自《關於夜空的 362 個問題:從天文觀測、太陽系的組成到宇宙的奧祕,了解天文學的入門書》,2019 年 4 月,貓頭鷹出版

PanSci_96
1217 篇文章 ・ 2147 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。