1

0
0

文字

分享

1
0
0

帝王企鵝表示:我不用碼錶

陳俊堯
・2012/03/03 ・585字 ・閱讀時間約 1 分鐘 ・SR值 452 ・五年級

圖片來源: JEB

我不會潛水,所以很羨慕能長時間潛水的人能探索我看不到的水底世界。想起小學時候跟同學比閉氣不呼吸時,撐不住的那一瞬間不馬上吸一口氣進來真的是好痛苦啊!動物潛到水裡找食物吃,有的時候潛到很深的地方。如果撐不住了才決定開始往表面移動,恐怕來不及到水面,游到半路就掛了吧? 這篇研究的作者發現帝王企鵝也會早早就決定要上浮,好像會預留一段時間,悠哉地回到水面吸氣。到底這些動物怎麼決定在潛了多久以後要開始上浮?

研究人員分析了 10 隻企鵝在海上的 15978 次潛水記錄,也加上 3 隻企鵝在人造水洞裡的 495 次潛水記錄。從在野外得到的記錄顯示不管潛深潛淺,企鵝最後一次下潛後都在 5.7 分鐘左右浮出水面,證明企鵝的確有個潛水耐力上限。可是在人造水洞裡的企鵝硬是比海上的企鵝潛得久。這是怎麼一回事?

進一步分析後他們發現原來在人造水洞裡游的企鵝揮鰭的頻率比較低,似乎不需要太努力游就能達到目的。如果這時不算時間,只看游泳時揮了多少次鰭,他們發現企鵝在海上和人造水洞裡揮的次數竟然是相似的。原來企鵝要潛多久不是看碼錶計時,而是用內建計步器在估算的啊!

-----廣告,請繼續往下閱讀-----

報導
Kathryn Knight. 2012. Penguins time dives by wing beat. J Exp Biol 215, ii. doi: 10.1242/jeb.068569

研究原文
Shiomi et al. 2012. Point of no return in diving emperor penguins: is the timing of the decision to return limited by the number of strokes? J Exp Biol 215, 135-140. doi: 10.1242/jeb.064568.

文章難易度
所有討論 1
陳俊堯
109 篇文章 ・ 22 位粉絲
慈濟大學生命科學系的教書匠。對肉眼看不見的微米世界特別有興趣,每天都在探聽細菌間的愛恨情仇。希望藉由長時間的發酵,培養出又香又醇的細菌人。

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
2

文字

分享

0
3
2
鑑識故事系列:浸入性肺水腫,在冬季的日內瓦湖
胡中行_96
・2023/03/27 ・2373字 ・閱讀時間約 4 分鐘

於平均水溫 7°C 的 12 月底,一名 56 歲的男子,潛入瑞士日內瓦湖。肥胖的軀體(BMI = 33 kg/m2),緊繃著潛水衣,背上扛負沉重的開放式水肺。有 6 個月潛水經驗的他,在水中悠游無阻。10 分鐘後,來到水面下 19.5 公尺。[1]

瑞士日內瓦湖。圖/Alexander Kovacs on Unsplash

突然,他咳嗽且呼吸困難,但嘴裡仍含著潛水用的呼吸調節器。同行的人陪他,一起遵循減壓程序:[1]每向上一段距離,就稍作停留,再繼續移動。[2]3 分鐘後,他們回到水面,男子立刻吐血。緊接著在船上,他心臟病發,失去意識,被及時施予包含心肺復甦術(cardiopulmonary resuscitation,簡稱 CPR)在內的基本救命術(basic life support),長達 5 分鐘。直到船隻靠岸,改由急救團隊接手,執行高級心臟救命術(advanced cardiac life support):除了 CPR,還做氣管插管(intubation)。期間血沫從他的口咽滲出。[1]

鼻咽、口咽和喉咽。圖/GnolizX & U.S. Centers for Disease Control and Prevention on Wikimedia Commons(Public Domain)
非此案的高壓氧氣艙。圖/Hyperbaric Center of Queens on Wikimedia Commons(CC BY-SA 4.0)

在持續不斷的心肺復甦術下,男子被直升機送抵附近唯一設有高壓氧氣艙(hyperbaric oxygen chamber)的日內瓦大學醫院。進入急診室時,離急救開始,已經過了 84 分鐘。他呼吸著低流量的氧氣,情況依然不見好轉。時而心臟暫停跳動;時而心室頻繁顫抖。血液中乳酸含量飆高,pH 值下降。入院 20 分鐘,也就是展開 CPR 後的第 104 分鐘,男子被宣告死亡。[1]

死因與責任歸屬

他的死因與相關責任的歸屬,得從 3 個面向的線索來分析:

-----廣告,請繼續往下閱讀-----
  1. 醫療紀錄:咳嗽、咳血、血沫,還有愈往水面愈惡化的病況等。之前的事件描述,大致涵蓋了重要資訊。[1]
  2. 警方調查:水溫、證人筆錄、潛水紀錄,以及潛水用具的運作狀況。警方排除潛水用具異常致死的可能。[1]
  3. 驗屍報告:屍體解剖、電腦斷層掃描、病理現象分析、尋找溺水跡象,以及組織學和毒物學檢驗等。驗屍在男子死後的隔天進行。他肺泡與肺泡之間的肺間質(pulmonary interstitium),病變增厚;[1]肺泡破裂出血,形成肺氣腫(pulmonary emphysema),且淤積液體;[1, 3]部份肺臟被填滿,呈現肺實變(pulmonary consolidations)。另外,呼吸道有少量泡沫和血液;心臟肥大;而且因為肥胖的緣故,肺動脈及冠狀動脈有脂肪斑紋(fatty streaks)。不過整體而言,沒有任何溺水的跡象。[1]
男子的肺間質增厚與肺實變。圖/參考資料 1,Figure 1(CC BY 4.0)

浸入性肺水腫

最後男子的死因,被判定為浸入性肺水腫(immersion pulmonary oedema)。《國際法醫期刊》(International Journal of Legal Medicine)的論文,分析此症詳細的形成機制,有下列幾種可能:[1]

  1. 人在水中的時候,水壓會促進心肺氣體交換的血液循環,也就是肺循環,以及提升心臟的血液輸出量,即心輸出量。因此而集中的血液,帶來過大的壓力,令肺部的微血管不堪負荷,血液便滲入肺泡。此時,其他因素也可能惡化病況,例如:緊繃的潛水衣、冰水收縮血管、高血壓、心臟肥大、體內水份過多、心理壓力和劇烈運動等。[1]
  2. 水壓集中血液,增加了右心室的工作量,使得左右兩個心室的輸出失衡,也造成肺部微血管壓力衰竭,終致水腫。如果病患原本還有左心室或心臟瓣膜異常,問題會更嚴重。[1]
  3. 水壓升高肺部的血壓,以及從潛水氣瓶費勁吸氣,都可能危及肺泡與肺部微血管;而呼吸不順的心理壓力、運動大量換氣,還有不當使用呼吸調節器的氣流阻力等,則加重對肺部微血管的傷害。[1]

急救和治療

一般潛水者察覺身體不適,當下會想回到水面上。然而,在水中上升的過程裡,逐步減壓的身體,會產生下列變化:無法繼續溶於血液的氣體被釋出,氣泡於是傷害肺部微血管;胸腔裡的氣體膨脹,水腫重新分佈;肺泡內壓力下降,拉大肺泡與肺部微血管的壓力梯度。這些都會使浸入性肺水腫的症狀惡化。[1]

儘管如此,急救的第一個動作,還是得把病患盡快送至水面。[1]情況許可的話,才在不同的水深處暫時停留,使氣體能安全地從身體組織釋出,免於氣泡的產生。[2]遠離水壓,脫去潛水衣,並溫暖身體,以減少血液過度向心肺集中。如果沒有生命危險,就讓病患坐下,經由面罩吸入高濃度的氧氣,然後送去有加護病房和高壓氧氣艙的醫院。[1]

在醫院裡,無論是用侵入性或非侵入性的呼吸器,都要以正壓維持呼吸道通暢。除非併發減壓疾病,系統性的高壓氧氣治療,其實沒有必要[1]同時,醫師可能也會開 β2-交感神經促進劑(beta-2 agonists),這種常見的氣管擴張藥物,加速肺泡清除液體。[1, 4]至於心臟的部份,硝化甘油(nitroglycerin)點滴則能放鬆血管,調節左右心室的血液流量。[1, 5]

-----廣告,請繼續往下閱讀-----

多數浸入性肺水腫的案例,不像此男子這麼嚴重,大約 2 至 3 天即可出院。不過,1 個月內,絕對不得再潛水或游泳。最好由醫師診斷,是否罹患高血壓、糖尿病、高血脂等心血管疾病,並檢查呼吸功能有無異常。未來下水時,務必選擇水溫暖和的地點,穿著合身的潛水衣,限制活動的水深與時間長度,還要避免水份過量,或吸入太多氧氣。[1]

  

參考資料

  1. Evain F, Louge P, Pignel R, et al. (2022) ‘Fatal diving: could it be an immersion pulmonary edema? Case report’. International Journal of Legal Medicine, 136, 713–717.
  2. CHAPTER 3 — Underwater Physiology and Diving Disorders’. (2016) In: U.S. Navy Diving Manual — Volume 1. U.S. (pp. 50) Naval Sea Systems Command.
  3. Emphysema’. (28 APR 2017) Mayo Clinic.
  4. Hsu E, Bajaj T. (23 JUN 2022) ‘Beta 2 Agonists’. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
  5. Kim KH, Kerndt CC, Adnan G, et al. (27 SEP 2022) ‘Nitroglycerin’. In: StatPearls. Treasure Island (FL): StatPearls Publishing.
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

11
3

文字

分享

0
11
3
翱翔天際的代價,飛機上的人體秘辛大解析——《科學月刊》
科學月刊_96
・2021/02/03 ・4462字 ・閱讀時間約 9 分鐘 ・SR值 527 ・七年級

  • 盧衍良|成功大學航太博士,朝陽科技大學飛航系主任,曾任職飛安會工程師、考選部典試委員與交通部、民航局、陸委會等委員。

不會飛的我們,總想著要飛上天際,但人體本身可不適合長時間處在高空中。第一個要面對的就是高空缺氧問題,隨著高度上升,大氣壓力也越來越低,人體的肺氧分壓也隨之降低,使我們血液中的血氧飽和度也降低,一旦降到 90% 以下時就有缺氧風險!而在高空中遠不止缺氧這項危險,會讓你耳鳴的飛機下降過程,以及較少聽過的高空減壓病,也都有可能發生在 3 萬 5 千英呎的高空上哦。

人類的身體與生俱來就不適合飛行,但我們卻利用智慧創造科技,改變了生活中的一切,至今已經飛行了 100 多年!今天就讓我們認識一下這些始終存在,卻也容易被忽略掉的航空生理症狀。

人類的身體與生俱來就不適合飛行,但卻利用智慧創造科技在空中飛行。圖/Pexels

在此之前,讀者們也必須先有個基本認知:一般生活醫學討論的,都是在「正常環境下,人體產生不正常症狀」的治療問題;然而航空醫學所要探討的,卻都是「正常人體在不正常的環境下,產生生理問題」的預防與抑制。那麼,那些因為航空而導致的「高空缺氧問題」、「氣體膨脹效應」,以及「高空減壓病」等生理問題,究竟是怎麼一回事呢?

高處的空氣比較新鮮?真相卻是氧氣很稀薄

人類飛行首先要面對的就是「壓力變化」的問題。大氣壓力 (atmospheric pressure) 會隨著飛行的海拔高度越高而越來越低,人類能夠自主呼吸的能力也就跟著越來越低,如圖一所示。現代民航客機動輒會飛到 3 萬 5 千英呎 (feet, ft) 以上的高空,為了讓旅客們感到舒適,機艙加壓早已是法規的必備要求。

大氣壓力會隨著飛行的海拔高度升高而下降,使得人類能夠自主呼吸的能力跟著降低。圖/科學月刊

但考慮到機身內外壓力差過大將會影響飛機結構安全,多數飛機在飛行中最大內外壓差約為 0.585 個大氣壓力,讓機艙內的壓力相當於海拔 8000 英呎以下,這樣的環境便可以讓旅客處於正常自主呼吸的狀態。近年新出廠的飛機,雖然可以讓機艙壓力高度 (cabin pressure altitude) 更接近能讓人體感到舒適的環境,但仍然無法達到相當於地表的壓力。

-----廣告,請繼續往下閱讀-----

而高空飛行環境除了低壓以外,機外的零下溫度環境與較少的高空水分,即使機艙內部經過調溫控制,其溫度通常也會偏低,且空氣會變得十分乾燥,這些都是飛機爬升到高空所伴隨而來的環境條件。

如下表所示,隨著海拔高度越高,大氣壓力越低,人體的肺氧分壓也會跟著降低,連帶的也讓血液中的血氧飽和度降低。血氧飽和度是反映呼吸循環功能的重要生理參數,是一種衡量人體血液攜帶氧氣能力的指標,當血氧飽和度低於 90% 以下時,人體就會有缺氧 (hypoxia) 的風險。

隨著海拔高度越高,大氣壓力越低,人體的肺氧分壓也會跟著降低,連帶的也讓血液中的血氧飽和度降低。表/科學月刊

高空缺氧危害並沒有一定的症狀或過程,每位個案都會有所不同,不過在臨床上,高空缺氧的初期症狀會讓人產生如微醺般的欣慰感,由於心智反應變慢,因此會失去警覺功能,手腳動作也會不協調。在行為表現上,則會變得無精打采、對周遭警覺減弱、行動遲緩,甚至昏沉欲睡,沉浸在一種具有莫名安全感的狀態中。

如果在發現缺氧症狀產生的初期無法及時挽救,隨著缺氧時間持續,人體會逐漸出現更加嚴重的症狀,包括暈眩、頭痛、心跳加速、口唇或皮膚發紫等,此時患者視野會逐漸縮小,並且有一股興奮溫暖的感覺,心理上也會產生主觀自信感。若在此時缺氧狀況仍未改善,那麼接踵而來的就會是動作不協調、心智行為改變、判斷力變差,最後導致意識喪失,進而死亡。

-----廣告,請繼續往下閱讀-----

缺氧危害的速度和發生高度有直接關係,醫學上用「有效意識時間」(time of useful consciousness, TUC) 來衡量。

如下表所示,一般噴射客機的巡航高度都在 3 萬多英呎的高空,從下表數據可知,當客艙顯著失壓使得機艙內的壓力高度相當於在 3 萬多英呎後,人體能夠應變的有效意識時間已經所剩不多。2005 年 8 月 14 日,太陽神航空 (Helios Airways) 的 522 號航班便是因為操作疏失,機艙未加壓而持續爬升高度,進而導致旅客與機組員,產生缺氧症狀而全數罹難的典型缺氧案例。

缺氧危害的速度和發生高度有直接關係,醫學上用「有效意識時間」(time of useful consciousness, TUC) 來衡量。表/科學月刊

搭飛機時最討厭耳鳴了——氣體膨脹效應

飛機飛得越高,所處的外在環境除了大氣壓力降低外,其實空氣密度也會變小,使得空氣體積變大。存在於人體內的氣體膨脹後,對於人體耳朵、頭顱腔室與內臟器官都會產生影響,造成不適。如果你在搭機過程中脫了鞋子,在你下機時也會發現自己的雙腳都膨脹變大了!

人體耳朵可以說是最直接敏銳,能感應到外在環境壓力改變與氣體膨脹的器官。

當飛機離地爬升時,由於外在壓力逐漸降低,在耳朵內部壓力不變的情況下,耳膜便會因為內外壓力不同而向外鼓起。此時,連接咽喉和中耳的耳咽管(eustachian tube)也會開啟以釋放內部壓力,讓耳膜內外重新達到壓力平衡。通常在飛機爬升過程的壓力變化較不會產生持續性的耳朵不適,大多數的不適都是在下降階段發生。

由於耳咽管在醫學上有一個綽號叫「one way tube」,顧名思義就是一條單行通道的意思,為了避免中耳發生細菌感染,耳咽管只允許中耳壓力釋放,不會主動開啟讓外在空氣進入中耳。當飛機開始下降時,外在環境壓力漸漸上升,但耳朵內的壓力維持不變,這時耳膜便會開始向內鼓起,產生耳鳴等不適症狀。

-----廣告,請繼續往下閱讀-----

由於耳咽管不會主動開啟,因此我們必須藉由某些強制手段讓它運動,例如嚼口香糖、吞嚥口水、喝水或打哈欠等動作,這些動作的共通點就是會讓耳咽管周邊的肌肉運動,讓耳咽管開啟以平衡壓力。

耳咽管構造。圖/Wikipedia

比較有意思的是,嬰兒在下降階段因為不知道怎麼減緩耳朵的不適感,因此在疼痛感作用下,哭泣是最好的改善之道!當嬰兒放聲大哭時,嘴巴打開剛好可以讓耳咽管附近的肌肉運動,達到平衡壓力的效果,還不懂事的嬰兒因為不適感降低,本能地就會哭得更大聲,好讓後續的不適感消除。他們並不知道大哭會影響其他旅客安寧,只知道大哭可以讓耳朵舒服一點。

嬰兒大哭可以減緩耳朵的不適感。圖/GIPHY

有時候,我們因為感冒產生的輕微發炎,使得耳鳴的感覺無法消除,此時,也可以藉由閉嘴捏鼻吐氣的強制手段,改善耳朵的不適感,這種方式在醫學上稱為持續閉氣用力動作(valsalva maneuver,又稱伐氏操作),如果做了這個強制動作還無法改善耳鳴問題,那麼便有可能是發炎問題嚴重,一定要借助醫生的診斷處方做必要治療了。

除了耳朵不適感外,由於飲食中難免會吃進許多氣體,再加上食物的消化過程也會產生氣體,這些氣體在腸道中存在,在爬升階段也會讓搭機旅客感到不適,最常見的就是有股想放屁的強烈感覺,當然也有些人會產生便意,甚至是急需到洗手間解便的不適感。為了避免在飛行爬升階段產生這些不適症狀,建議平時能有良好的排便習慣,以免腸道內有過多宿便存在。此外,搭機前盡量不要食用大量餐點,也最好減少食用容易產生氣體的食物,例如豆類或汽水與可樂類蘇打飲料,而嚼食口香糖除了吞嚥口水外,也會吞進不少空氣,此行為也建議避免。

-----廣告,請繼續往下閱讀-----

潛水完先別急著搭飛機——高空減壓病

高空減壓病也稱為氣栓症,通常沒有一定症狀,較容易被忽略病因。

在正式介紹這個疾病之前,讓我們先回想一下開汽水的過程:當環境壓力越大,氣體溶解在液體中的數量就越多,溶解度越高,而當瓶蓋被旋開的那一刻,因為瓶內壓力急速降低,你會發現原本溶解在汽水中的氣體大量釋出形成氣泡,而高空減壓病的根源,就像是這些冒出來的氣泡一樣,這些氣泡將對人體造成危害!

人類呼吸過程,除了吸取氧氣並排出二氧化碳外,佔空氣比例 4/5 的氮氣也會隨著呼吸過程在人體內循環。當飛機離地爬升,隨著環境氣壓急速降低,原本已溶解於體內的氮氣,因溶解度遽降而生成大量的氣態氮氣在人體內。當溢出的氮氣量遠超過肺臟的排出量時,氮氣就會形成氣泡在血液中循環,產生各種不同類型的臨床症狀,在醫學上稱為減壓症,由於這類症狀易發生於高空環境,因此被稱為「高空減壓病」。

高空減壓病的臨床症狀非常多元,因壓力遽降而釋出的氣泡,將隨著血液流竄到體內四周,如果在關節附近或是深部肌肉組織聚集停滯,就會產生屈痛或是鈍痛。此外,也可能產生氣哽,導致胸口灼熱、刺痛、乾咳和呼吸困難;神經上的症狀則有視覺障礙、頭痛與肢體癱瘓等;而在皮膚上則有可能產生紅疹塊、刺痛、癢及水腫等。

瓶內壓力急速降低使汽水內氣體大量釋出形成氣泡,與造成高空減壓病的原因相似。圖/Pexels

當你出國旅遊從事水肺潛水 (scuba diving) 運動後再搭機時,由於潛水活動是在高壓環境下呼吸空氣,故大量氮氣會溶解於身體內各組織,也是常見高空減壓病的形成原因。若是潛水潛得越深越久,氮氣的溶解量就會越多速率也越快;而潛水完後,細微氣泡就會形成在體內組織,如果你潛水完後立刻搭機飛行,被保存在體內的氣泡便會膨脹進而阻塞血管、壓迫神經或引發血液病變,發生高空減壓病。臨床上,潛水後的建議飛行最低高度約為 5000 英呎,以避免出現高空減壓病的症狀;然而一般民航客機的加壓系統,通常會讓機艙內壓力相當於海拔 8000 英呎,因此無法抑制此類症狀發生,因此建議潛水後,至少 24 小時內應避免搭機飛行。

-----廣告,請繼續往下閱讀-----

身體卯足全力對抗環境!達成你想飛上天的夢想

一般民眾較常知道的是搭機過程會讓味覺與嗅覺變差,所以飛機餐會變得不那麼美味。相較起來,高空缺氧、氣體膨脹效應,以及高空減壓病就較容易被忽略,期望讀者們閱讀完本文後,可以對自己的身體有更多認識,讓搭機旅遊變得更加美好。

  • 〈本文選自《科學月刊》2021 年 2 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

科學月刊_96
249 篇文章 ・ 3440 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。