0

0
0

文字

分享

0
0
0

降落彗星,開啟彗星研究新視野

臺北天文館_96
・2012/02/10 ・1041字 ・閱讀時間約 2 分鐘 ・SR值 568 ・九年級

-----廣告,請繼續往下閱讀-----

歐洲的羅賽達號太空船(Rosetta)正朝向它的目標—67P/Churyumov-Gerasimenkoand彗星前進,預計在2014年進入環繞這顆彗星的軌道,並釋放一個探測器,降落在這顆彗星的表面。這是彗星探測史上的兩個創舉。

彗星是45億年前太陽系形成歷史之初遺留下的原始物質所構成的小天體,一生中絕大部分時間都待在寒冷的太陽系外圍,性質鮮少變化,因此被天文學家視為研究太陽系早期歷史的金礦。

當它們沿著狹長的軌道逐漸逼近太陽時,受到的太陽光熱愈來愈熾烈,逐漸轉化成地球夜空中令人摒息的美景。歐洲太空總署(ESA)於2004年發射羅賽達號,讓它們盡量靠近這個美景的最佳賞景點,近距離研究這些帶著太陽系原始訊息的天體。

到目前為止,科學家們對彗星的瞭解,有很大一部份是來自數次的彗星飛掠任務。然而,飛掠式的彗星任務,只能匆匆瞥一眼處在某一演化階段的彗星外貌,無法獲得更全面的資料。這就是羅賽達號有別於其他彗星任務的地方,因為羅賽達號將環繞67P彗星達17個月之久,隨著彗星接近太陽再遠離太陽,科學家們將可親眼見到整個彗星受到猛烈太陽光熱影響下的演化狀況。

-----廣告,請繼續往下閱讀-----

還在努力航向67P彗星的此時,羅賽達號處在休眠的狀態,預定在2014年的元旦復甦,之後進行一個月的自我檢測工作。如果一切安好,那麼將在2014年8月進入環繞67P彗核的軌道,掃瞄彗星表面,尋找降落地點。一旦選定降落地點後,太空船將降低高度至距離彗核表面約1公里之處,並放出登陸器(lander)。

登陸器名為「菲萊(Philae)」,此名原是埃及尼羅河中一座小島的名稱,科學家在這座靠近亞斯文的島上的神廟中,發現一塊石碑,就是得以讓世人破解古埃及文奧秘的「羅賽達石碑(Rosetta Stone)」。菲萊登陸器預定將在2014年11月登陸彗星表面;這是首次被完全控制的彗核登陸行動,類似阿波羅號登陸月表一樣。由於彗星表面重力極低,菲萊登陸器一確定登陸成功後,便會以類似魚叉的鉚釘鑽透彗核表面以便固定。固定後,登陸器才終於能著手取得這個彗核的第一手資料:收集彗核樣本,利用探測器中的顯微鏡自動檢測,並拍攝彗核地表的全景影像。

在此同時,上空環繞的太空船也很忙。船上的感應器不斷測繪彗星表面地形和磁場,監測彗星爆發噴流和間歇噴泉,測量物質流速率等等。將在彗核地表的登陸器和上空環繞的太空船資料予以整合後,還可獲得彗星的3D立體影像,甚至是彗核表面以下的地質結構等。

這個獨一無二的彗星任務,最終結果必定將讓彗星研究的歷史寫上一段好長的故事。

-----廣告,請繼續往下閱讀-----

 

資料來源:Mission to Land on a Comet[2012.01.31]

轉載自台北天文館之網路天文館網站

文章難易度
臺北天文館_96
482 篇文章 ・ 39 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

1

8
4

文字

分享

1
8
4
太陽系如何形成、如何演化?就讓「靈神星」來解答!
EASY天文地科小站_96
・2023/04/12 ・2962字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/黃子權|掉入岩石堆中的研究生,現就讀台大地質所
  • 文/林彥興|現就讀清大天文所,努力在陰溝中仰望繁星

M 型小行星與行星的誕生

了解太陽系的形成歷史與演化,是行星科學最重要的使命之一。然而,身在太陽系形成後 46 億年的我們所看到的行星,都是經過漫長演化後的結果。它們的表面特性、內部結構,早已與剛形成時大相逕庭。

因此,想要研究太陽系的形成與演化,小行星是相當重要的目標。由於小行星質量小、冷卻快,更不會有複雜的風化和地質運動,因此它們從太陽系形成之初到現在都沒有什麼改變,就像活化石一般。而過去幾十年,人類也確實對小行星進行了廣泛而詳細的研究,比如拍攝照片計算它們的軌道,用光譜分析化學組成,甚至派遣太空船(如 JAXA 的隼鳥一號、隼鳥二號、NASA 的 OSIRIS-REx)直接前往小行星,將樣本採回地球分析。

而在太陽系目前已知的一百多萬顆小行星中,有一個相當特殊的族群,它們大多具有較大的密度和較高的雷達反照率,同時在光譜上缺乏特徵。基於上述特點,科學家們認為它們的組成中有含有不少金屬,因此稱之為 M 型小行星。

根據目前天文學家對行星形成的理解,原行星盤(protoplanetary disk)中的金屬元素分布理應相當分散,因此能夠自然產生元素分異並聚集大量金屬的地方,只有足夠大、足夠熱的原行星(protoplanet)的行星核。所以傳統上,M 型小行星被視為受到撞擊後裸露的行星核,同時也是鐵隕石的來源之一。但截至目前,仍未有探測器直接造訪 M 型小行星,確認這個假說是否正確。

-----廣告,請繼續往下閱讀-----

近期,新的觀測資料更顯示,某些 M 型小行星似乎比人們預想的還輕,各種特徵也和人們對行星核的認知不盡相同(例如,在表面觀測到含水礦物的訊號)。這表示傳統的行星形成與演化模型,也許不盡正確。換個角度看,這也代表對 M 型小行星的研究,也許將能幫助我們揭開行星演化理論中的盲區。

M 型小行星是由什麼構成的?它們的演化歷史又是如何?苦於距離遙遠,過去人們對這些問題往往只能止於粗略的推測。但隨著靈神星號任務逐漸上軌,我們離解答這些問題(的一部分)只有一步之遙了。

靈神星號探測器。圖/NASA/JPL-Caltech/ASU

靈神星探索任務

靈神星探索任務(Psyche)是 NASA 發現計畫(Discovery Program)的一部分。發現計畫始於 1989 年,每隔幾年就會向全美國徵求任務提案,經過重重篩選後,最具有科學價值且最可行的團隊,就可以獲得 NASA 提供的經費,將他們的構想付諸實行。從 1996 年的 NEAR 任務開始,發現計畫已經為十幾個重要的太陽系探索任務提供機會,包含近期因太陽能板發電量降低而終止的火星「洞察號(InSight)」任務。2014 年,第 13、14 次發現計畫徵選開始,最後脫穎而出的其中一個計畫,正是靈神星探索任務。

而計畫要觀測的目標靈神星(16 Psyche)於 1852 年被義大利天文學家加斯帕里斯(Annibale de Gasparis)發現,並以希臘神話中靈魂之神「賽姬」命名。祂是第 16 個被發現的小行星,雖然不是最大的小行星(平均寬度約 220 公里)但卻是目前已知小行星中第 10 重的,其質量佔小行星帶總質量的 1%。根據估算,靈神星的密度大約為 3.9 g/cm3,遠低於鐵鎳隕石的 7.9 g/cm3,因此靈神星不太可能真的完全由金屬構成,比較可能是類似石鐵隕石那樣,由金屬與岩石共同組成。

-----廣告,請繼續往下閱讀-----
科學家對靈神星的想像。圖/ NASA/JPL

作為發現計畫的一員,靈神星計畫切實地反映了該系列任務的宗旨:便宜、快速的解答重要的疑問。M 型小行星是行星形成與演化中相當重要的一片拼圖,而靈神星又是體積最大的 M 型小行星,其重要性不言而喻。對靈神星的探測,勢必能更加推進人們對行星演化的認知。

靈神星號的科學目標及預期解答的問題為:

  1. 靈神星是行星核還是未熔結物質?
  2. 靈神星表面的相對年齡為何?
  3. 小型金屬天體是否含有和高壓地核同比例的輕金屬?
  4. 靈神星形成環境的氧化還原性?
  5. 靈神星地表及撞擊坑特徵?

為了達到這些目標,靈神星號上搭載了以下儀器:

  • 多光譜成像儀 (Multispectral Imager)
  • 伽馬射線/中子光譜儀 (Gamma-Ray and Neutron Spectrometer, GRNS)
  • 通量閘磁強計 (Fluxgate Magnetometer)
  • X頻無線電實驗 (Radio Science (X-band))

整體而言,靈神星號的載酬相當簡要,科研儀器加總起來只占約 30 公斤,且每項儀器都是經過「實戰」驗證過的:多光譜成像儀來自火星好奇號探測車,GRNS 來自水星的信使號任務、磁強計參與了洞察號任務、X 頻無線電實驗(利用通訊時訊號的都卜勒效應測量重力強度變化)更是有多項成功紀錄。使用這些驗證過的儀器不僅能減少任務風險,同時能省下不少研發經費,提高任務的 CP 值。另外,靈神星號同時也會為深空網路(Deep Space Network, DSN)測試全新的「深空光學通訊(Deep Space Optical Communication, DSOC)」系統,利用雷射作為資料載體進行傳輸,科學家估計 DSOC 的資料傳輸速度,將比過去使用無線電的 DSN 快 10 到 100 倍。

靈神星號各項儀器位置圖。圖/修改自NASA/JPL-Caltech/ASU
靈神星號的伽馬射線光譜儀及中子光譜儀。圖/Johns Hopkins APL/Ed Whitman

另外,隨著科技進步,太空探索不再是國家機構的天下,各種商業公司紛紛加入了衛星製造的行列。因此重視任務 CP 值的靈神星號,從設計初期,科學家們便決定向商業公司尋求成熟、有發射紀錄且搭載了離子推進系統的衛星載具。最終他們選定了 Maxar 旗下的 Space Systems/Loral(SSL)公司的 1300 系列框架作為靈神星號的主體,並由噴氣推進實驗室(JPL)整合飛行系統(包含指令及資料處理系統)。靈神星號的推進系統是一具 SPT-140 霍爾效應推進器(Hall effect thruster),藉由游離氙氣並透過磁場將其加速噴出以獲得推力。搭配發電量達 20 千瓦的太陽能板及 922 公斤的氙氣,足夠支持靈神星號走完將近六年的航程。

抵達靈神星後,探測器將嵌入軌道開始環繞靈神星。科學家為靈神星號安排了四個逐漸降低的軌道(A 到 D),每個軌道都有各自主要的研究目標:

  1. 最高也是最初始的軌道 A 半徑約 700 公里,靈神新號將會在這裡測量靈神星的磁場。
  2. 56 天後,探測器將降至軌道 B(半徑 290 公里)並且開始對靈神星的地貌進行調查。
  3. 76 天後,靈神星將下降至半徑 170 公里的軌道 C,這是最小的穩定繞極軌道,同時也是最適合用來探測靈神星重力場的高度。
  4. 100 天後靈神星號將會降至最後、最低的軌道 D,軌道半徑僅 85 公里,在這探測器將利用 GRNS 調查靈神星表面的元素分布。
靈神星號任務示意圖。圖/修改自 NASA/JPL-Caltech

靈神星號原訂的發射日期為 2022 年 9 月。然而在飛行前的測試中,任務團隊發現飛行軟體異常,導致它錯過了 2022 年的發射窗口。經過幾個月的調查和調整,目前 NASA 公布的下個發射窗口為 2023 年 10 月 10 日以後,屆時靈神星號將會搭乘 SpaceX 的獵鷹重型火箭進入太空,就讓我們好好期待靈神星號傳回來的各種資料吧!

-----廣告,請繼續往下閱讀-----

延伸閱讀

  1. 我們的征途是星辰大海:回顧隼鳥二號的億里長征
  2. Just Look Up!小行星監測系統「哨兵」全面升級
  3. 災難片成真!?小行星「貝努」行蹤飄忽,撞地球的機率有多大?
所有討論 1
EASY天文地科小站_96
23 篇文章 ・ 1440 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事

0

8
5

文字

分享

0
8
5
數學有多好用?從種馬鈴薯到上太空,那些我們沒發現的數學——《大自然的數學遊戲》
天下文化_96
・2022/12/25 ・2278字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

數學的共振系統存在於太陽系中

太陽系的動力系統充滿了共振。

月球的自轉由於受到其他天體的攝動(perturbation),因而有輕微的起伏,不過它的自轉週期與它環繞地球的公轉週期相同,這是自轉週期與軌道週期的「一:一」共振。因此,我們在地球上總是看到月球的同一側,從來無法看到月球的「背面」。

水星每隔五十八.六五日自轉一周,每隔八十七.九七日公轉太陽一周。二乘八十七.九七等於一七五.九四,而三乘五十八.六五等於一七五.九五,因此水星的自轉週期與軌道週期是一個「二:三」共振。事實上,長久以來,天文學家一直以為兩者構成「一:一」共振,以為兩個週期大約都是八十八日。

因為想要觀察像水星這麼接近太陽的行星,實在是一件很困難的事情。這使得天文學家相信,水星的一側熱得不可思議,而另一側則冷得不可思議,最後卻發現事實並非如此。不過共振還是存在,而且比單純的「一:一」更有意思。

在火星與木星之間,有一個寬闊的小行星帶(asteroid belt),其中包含了數千個微小的天體。這些小行星的分布並不均勻,在某些與太陽距離固定的軌道上,我們發現還有些「小行星子帶」,在其他距離上則幾乎找不到它們的蹤跡。這兩者都得歸因於與木星的共振。

-----廣告,請繼續往下閱讀-----
火星與木星間的小行星帶。圖/wikipedia

希耳達群(Hilda group)小行星就位在小行星子帶,它們與木星形成「二:三」共振。也就是說,這群小行星所處的位置,剛好使它們在木星公轉兩圈的時間中環繞太陽三圈。而最有名的小行星帶隙(gap of asteroid),則是「一:二」、「一:三」、「一:四」、「二:五」與「二:七」的共振。

各位讀者也許有些擔心,為什麼共振同時能夠解釋小行星帶的叢聚與間隙呢? 答案是每一個共振都具有本身的動力學特徵,某些會造成叢聚效應,某些的作用則剛好相反,全都由共振比例數字來決定。

用數學來預測未來

數學的另一項功能是進行預測。

在了解天體的運動之後,天文學家便能預測月食、日食,以及彗星的回歸等等。他們知道應該將望遠鏡對準何處,才能重新發現運行到太陽背面、暫時無法觀測的小行星。由於潮汐主要是由日、月與地球的相對位置所控制,所以他們也能預測許多年後的潮汐。

(但這種預測的主要困難並非來自天文學,而是大陸的形狀與海底的地形,它們都能使某個高潮提前或延後。然而,即使過了一個世紀,這些地理因素也幾乎不會有什麼改變,因此一旦了解它們造成的效應之後,將這些效應考慮在內只是例行公事。)

-----廣告,請繼續往下閱讀-----

反之,想要預測天氣則困難無數倍。對於控制天氣的數學,我們知道的跟控制潮汐的數學一樣多,可是天氣天生就有一種不可預測性。縱使如此,氣象學家仍能做出有效的短期預測,比方說三、四天以後的天氣。不過,天氣的不可預測性與隨機性毫無關聯。在第八章中,當我們討論到混沌概念的時候,將會詳加探討這個題目。

數學所能做的遠不止於預測。一旦了解某個系統如何運作,我們就不必再做個被動的觀察者了。我們可以試圖控制這個系統,讓它照我們的意思行事。可是最好不要野心太大,例如天氣控制就仍處於嬰兒期,我們還無法隨心所欲地造雨,即使天上有一大團現成的雨雲。

控制系統的例子不勝枚舉,從保持汽鍋溫度固定的恆溫器(thermostat)到中世紀式的造林。還有,假如沒有精妙的數學控制系統,太空梭就會在空中橫衝直撞,因為任何太空人絕對沒有足夠迅速的反應,可矯正它固有的不穩定性。至於使用電子式心律調節器幫助心臟病患者,則是控制的另一項實例。

這些例子,讓我們看到數學最為實際的一面,也就是它的實際應用:數學如何造福人群。

-----廣告,請繼續往下閱讀-----

隱身文化幕後的數學工具

我們的世界奠立在數學基礎上,數學不可避免地深植於全球文化中。我們並非總能夠了解數學對我們的生活有多大影響,理由是它被人盡可能藏在幕後。

這是很合理的,譬如您找旅行社安排一次度假旅遊時,不必了解設計電腦或電話線的數學與物理理論,也不必了解使某座機場能起降最多架次飛機的最佳化(optimization)程式,或是為駕駛員提供正確雷達影像的信號處理方法。

當您收看電視節目的時候,也不必了解在螢幕上製造特殊效果的三維幾何、藉由衛星傳送電視訊號的編碼方式、解出衛星軌道運動方程式的數學技巧,以及在製造可將衛星送到定位的太空的各個零組件時,每個步驟所應用的數千種不同的數學工具。

還有,農夫在種植新品種的馬鈴薯時,也不必知道遺傳學統計理論,不必知道這理論如何幫助育種學家找出何種基因使這品種具有抗病性。

-----廣告,請繼續往下閱讀-----

然而,以前一定有人了解這一切,否則飛機、電視、太空船、抗病性的馬鈴薯都不可能發明出來。現在也需要有人了解這一切,否則它們就不會繼續運作。而將來也需要有人發明新的數學,以便解決新出現的或迄今尚未有解的難題,否則當我們面對某種改變,必須解決新的問題,或是舊問題需要新的解答時,我們的社會便會崩潰。

假如數學以及所有植基其上的發展,突然之間從我們的世界消失,人類社會將在瞬間四分五裂。又假如數學從此停滯不前,再也不會向前邁出一步,我們的文明便會很快開始倒退。

——本文摘自《大自然的數學遊戲 》,2022 年 11 月,天下文化出版,未經同意請勿轉載。

天下文化_96
132 篇文章 ・ 618 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

5
4

文字

分享

0
5
4
解析韋伯太空望遠鏡第一批影像背後的科學意義
EASY天文地科小站_96
・2022/07/14 ・4350字 ・閱讀時間約 9 分鐘

  • 作者:林彥興|EASY 天文地科小站主編、清大天文所碩士生,努力在陰溝中仰望繁星

萬眾矚目的詹姆士韋伯太空望遠鏡,在經過半年的校準與測試後,終於公開了它拍攝到的第一批成果。這些五彩斑斕、美麗絕倫的照片究竟是什麼樣的天體,照片的背後又有哪些深藏的意義?就讓我們一起深入解密,韋伯的第一批照片吧!

韋伯望遠鏡是什麼?

詹姆士.韋伯太空望遠鏡是美國、歐洲與加拿大太空總署合作開發的新一代旗艦級紅外線太空望遠鏡,也是無數天文學家夢寐以求、能幫助人類破解許多未解天文迷團的利器。

韋伯的研發其實早從 1996 年就已經開始,但是由於開發時遇到諸多困難,導致嚴重的預算超支與進度延宕,這台耗資上百億美金的超級望遠鏡,直到去年年底才終於從法屬圭亞那發射中心,用一枚亞利安 5 號運載火箭發射升空,前往距離地球 150 萬公里的日地第二拉格朗日點。

拉格朗日點是什麼?

日地拉格朗日點一共有五個。當物體在這些點上,其受到來自太陽與地球的重力恰到好處,因此太空船只需要少量的燃料,就可以長期與地球和太陽保持穩定的相對位置,可謂是地球軌道附近的風水寶地。

而韋伯繞行的,是位於地球後方的第二拉格朗日點,簡稱 L2。之所以選擇這裡,是因為只有 L2 的位置剛好會讓地球、太陽、月亮都在同一側,而這三個星體正是天文望遠鏡的主要紅外線光害來源。位在 L2 的韋伯,就可以用它的遮陽帆一次把三顆星體全部擋住,認真凝望遠方而不受干擾,因此 L2 可以說是觀測宇宙的絕佳地點。升空的幾個月之間,韋伯已經完成一系列的儀器校準工作,一步步把望遠鏡調整到最佳狀態。

-----廣告,請繼續往下閱讀-----

相比知名前輩「哈伯太空望遠鏡」,韋伯的優勢不只是擁有比哈伯大六倍的鏡面,更重要的是它是以紅外線為主力觀測波段。宇宙膨脹造成嚴重紅移,但哈伯望遠鏡的守備範圍主要是可見光,波長範圍是 90 – 2500 奈米,可說是鞭長莫及啊。

這時換上以波長 600 – 28500 奈米的紅外線為守備範圍的韋伯,就可以讓我們看到更遙遠、更古老的宇宙。此外,同一個天體在可見光和紅外線看起來,往往長得相當不一樣。這個強大的紅外線觀測能力,正是韋伯最引以為傲的武器。

作為深具儀式感的第一批科學影像,韋伯這次公布的影像分別對應四個主要科學主題:早期宇宙星系演化恆星的生命循環系外行星

1. 早期宇宙—— 星系團 SMACS 0723 與重力透鏡效應

星系團 SMACS 0723。圖/Webb Space Telescope

畫面中心黃白色的天體,是由成百上千的星系共同組成的星系團 SMACS 0723。在韋伯之前,哈伯太空望遠鏡就曾經花費數個禮拜的時間拍攝這個星系團。然而擁有更大鏡面、更精良儀器的韋伯,僅用了 12.5 個小時就拍出了解析度更高、畫面品質更好的照片,讓我們看到許多以前難以辨識的黯淡星系。可見哈伯與韋伯在觀測能力上的差距。

對天文學家來說,圖中最令人興奮的其實不是前景壯闊的星系團,而是後方這些經過重力透鏡扭曲和放大的小小星系們。星系團龐大的質量扭曲了周圍的時空,讓整個星系團好像一塊巨大的放大鏡一樣,可以偏折和聚焦通過的星光,稱為「重力透鏡效應」。

當星系團後方更遙遠、更古老的星系發出的光線通過星系團時,就會被星系團的重力透鏡效應偏折和聚焦,形成而圖中無數弧形的扭曲影像。

-----廣告,請繼續往下閱讀-----
紅圈為照片上受重力透鏡影響的區域之一,可以看到星系被拉長。

這些仍在襁褓中的小小星系,往往正在快速的孕育新的恆星,或是互相合併,因此有著混沌不規則的形狀。離我們越遠的星體發出的光,需要越長的時間才能到達我們的眼中。因此研究這些遙遠且古老的星系,能幫助天文學家理解宇宙早期的模樣。

2. 星系演化——史蒂芬五重奏(Stephan’s Quintet)

上一張照片讓我們認識星系的起源,這張「史蒂芬五重奏(Stephan’s Quintet)」則可以讓天文學家更仔細地研究星系內的複雜結構,以及星系與星系之間的交互作用。

史蒂芬五重奏(Stephan’s Quintet)。圖/Webb Scape Telescope

正如其名,「史蒂芬五重奏(Stephan’s Quintet)」是由五個視覺上相當靠近的星系所組成。但其實最左邊的這個星系(NGC7320)與另外四者並無關聯,只是從地球上看剛好位在天空中差不多的位置而已。

圖片中偏向黃白色,感覺如絲綢般順滑的部分是在近紅外線波段拍攝,主要顯示的是星系中恆星的分布;而醒目的橘紅色,則是來自中紅外波段的資料,展示的是星系中的高溫塵埃,以及星系中的氣體高速對撞時產生的震波(Shock wave)。

除了影像,韋伯還使用光譜儀仔細檢視了影像中右上方的星系(NGC 7319)中心,因為那裏有一顆比太陽重 2400 萬倍的超大質量黑洞,正在吸食周遭的氣體,並在過程中釋放巨大的能量。

-----廣告,請繼續往下閱讀-----

藉由觀察光譜的細節,韋伯可以分辨出像是氬離子、氖離子或是氫分子等等化學組成,甚至知道氣體的溫度、運動速度這些從一般照片難以辨識的資訊。

史蒂芬五重奏就像一個天然的實驗場,讓天文學家研究星系演化的詳細過程。

3. 系外行星——WASP-96 b 的大氣光譜

這一張照片可能是整批影像中,視覺上最不起眼的一張,它是系外行星 WASP-96 b 的大氣光譜。

WASP-96 b 的大氣光譜。圖/Webb Scape Telescope

最近 20 多年來,人類對太陽系以外行星的認識越來越多。截至今日,人類已經發現超過 5000 顆系外行星。然而,以現有的觀測技術,天文學家通常只能用一些間接的方法,測量它們的質量、半徑、軌道週期等粗略的特性。想知道這個行星是否適合生命生存,就不能少了行星大氣層的化學組成和溫度資訊。

那要怎麼取得行星的大氣資訊呢?當行星通過恆星跟地球中間時,恆星的一部分星光將會通過行星的大氣層,並被行星的大氣吸收。吸收的多寡和波段,取決於行星大氣層的溫度和化學組成等特性。此時,天文學家就可以藉由分析光譜中的各種特徵,去回推行星大氣層的性質。

圖片中的白點,即是韋伯實際觀測 WASP-96 b 時取得的光譜資訊。而藍色的線,則是天文學家認為最貼合觀測數據的理論模型。

-----廣告,請繼續往下閱讀-----

根據這個觀測結果,天文學家計算出 WASP-96 b 的大氣溫度約為 725°C,大氣中明顯有著水氣,並推測可能還有雲和霾存在。未來進一步的分析和觀測,將為世人揭開更多系外行星的神祕面紗。

4. 恆星的生命循環——「南環狀星雲」與「船底座大星雲(Carina)」

最後兩張照片都與恆星的生命循環有關。正如人會有生老病死,恆星也是一樣。

恆星一般誕生在巨大分子雲中,氣體在重力吸引下逐漸塌縮、升溫並點燃核融合,成為一顆恆星。

當小質量的恆星步入晚年,其結構容易變得不穩定,最終將自己的外層氣體拋射出去,形成美麗的行星狀星雲,也將氣體吐回到星際空間中,成為下一代恆星的養分。氣體都拋射完之後留下的核心,就是白矮星。

-----廣告,請繼續往下閱讀-----

各位現在看到的,是暱稱「南環狀星雲」的行星狀星雲,左右兩張圖分別於近紅外線與中紅外線拍攝。

南環狀星雲。圖/Webb Scape Telescope

我們可以看到,左圖中的影像比右圖要更清晰一些,這是因為在相同的望遠鏡口徑下,波長越短所能達到的理論解析度就越高。

有趣的是,在左圖中看起來位於星雲中心的明亮恆星,其實並不是行星狀星雲的核心。真正的核心其實是在其左下方,一顆被塵埃包裹著的黯淡白矮星。在近紅外線波段的影像中,這顆白矮星幾乎淹沒在隔壁恆星的炙烈星芒之中。

但在中紅外波段,由於恆星的亮度相對降低,包裹著白矮星的塵埃發出的光就變得清晰可見。再次展示即使是同一個天體,使用不同的波段進行觀測,往往可以看到不同的東西。

最後這片壯麗的宇宙山崖,則是位於「船底座大星雲 Carina」西北角的 NGC3324 恆星形成區。在這裡,源自星雲中無數初生恆星所發出的炙烈輻射、恆星風與噴流,吹散、游離了星雲中原有的濃密氣體與塵埃。交織出這片壯闊而複雜的結構。

船底座大星雲(Carina)。圖/Webb Scape Telescope

這張照片一共結合了這六個不同的濾鏡的影像拍攝而成。每個濾鏡涵蓋的波段各不相同,代表的物理意義也不一樣。比如(F090W、F200W、F444W)這三個寬帶濾鏡,分別在影像中按照波長順序,以藍色、綠色和紅色這三原色呈現,為照片打下骨幹。而在此之上,照片的製作團隊又疊上青色代表氫原子的(F187N)濾鏡影像,以黃色代表氫分子的(F470N)濾鏡影像,以及用橘色代表甲烷和多環芳香烴的 (F335M) 濾鏡影像,為照片再添更多的細節。

-----廣告,請繼續往下閱讀-----

想要將這麼多個波段的影像全部結合起來,仔細調整讓細節更加突出,最終呈現出一張如此絢麗又震撼的照片,是非常不容易的。這展示了韋伯太空望遠鏡不僅在科學上相當重要,在藝術上也價值非凡。

最後別忘了,以上只挑選介紹了第一批資料中最具代表性的幾張,更多關於五個目標的照片和光譜,可以在韋伯的官網上找到。而這批照片,又只是韋伯未來二十年服役生涯中,前兩個月的小試牛刀而已。韋伯的時代,才剛剛要開始!

EASY天文地科小站_96
23 篇文章 ・ 1440 位粉絲
EASY 是由一群熱愛地科的學生於 2017 年創立的團隊,目前主要由研究生與大學生組成。我們透過創作圖文專欄、文章以及舉辦實體活動,分享天文、太空與地球科學的大小事