0

0
0

文字

分享

0
0
0

日本產官學合作開發高速讀寫能力之MRAM

國科會 國際合作簡訊網
・2012/02/10 ・615字 ・閱讀時間約 1 分鐘 ・SR值 574 ・九年級

-----廣告,請繼續往下閱讀-----

NEC、日立、ULVAC、東京大學等的研究者們,雲集在東北大學大野英男教授的研究室內,正加速進行次世代的半導體記憶體─磁性記憶體(MRAM)的開發。未來將以取代目前市場主流之動態隨機存取記憶體(DRAM)為目標。

MRAM的基本構造接近DRAM。然透過電容內儲滿的電荷以記憶資料的DRAM,為一切斷電源資料就會消失之揮發性記憶體,故為確保資料需持續供電。而MRAM為一即使切斷電源資料亦不會消失之不揮發性記憶體,因使用磁力來記憶資料,可保持高性能並具有高速讀寫能力。一旦寫入資料,即使電源切斷,資料亦不會消失,待機時的電力可望趨近於零。

所開發之MRAM使用了以磁力來使電阻變化之強磁性的隧道接合(MTJ)元件(element)。此一裝置,乃藉由以兩個強磁性體夾著絕緣膜的構造,在施加電壓後讓電流流經絕緣膜,再以電流值的大小之不同來記憶資料。

半導體係透過基板上之更為微細電路的形成,在提升晶片性能的同時亦抑制消耗電力。目前先端製品的電路線幅已突進至20奈米。但若要進入10幾奈米,恐需開發次世代的製品。大野研究室的MRAM,在資料的改寫上不使用磁界,而是開發出了只藉由電流的流通來改變MTJ元件之磁化方向的元件,並讓線幅即使細微化到40奈米,仍可進行資料的改寫。原先最大的弱點為記憶容量,現已提高到1gigabit以上。

-----廣告,請繼續往下閱讀-----

本計畫為內閣府之最先端研究開發支援計畫(09-13年)。NEC等和大野研究室已在11年起於筑波市的TIA之無塵室內著手進行量產技術的開發。

轉載自國科會國際合作簡訊網

文章難易度
國科會 國際合作簡訊網
47 篇文章 ・ 3 位粉絲

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

1

1
7

文字

分享

1
1
7
磁力的時代即將來臨?磁電效應的物理、應用與未來
Castaly Fan (范欽淨)_96
・2023/09/25 ・3608字 ・閱讀時間約 7 分鐘

磁力的時代

著名理論物理學家加來道雄(Michio Kaku)曾在《2100 科技大未來》一書中提到:

不遠的未來將是「磁力的時代」。上世紀可以被視為「電力的時代」,從電子的發現以及量子力學的發展開始,人們意識到電子相當容易操縱,這也造就了收音機、電視、電腦、智慧型手機等各類電子產品的誕生。

日本 JR 磁浮 MLX01-2 實驗車,時速 581 公里破 2003 年金世紀界紀錄。 圖/wikimedia

但在不遠的將來,諸如「室溫超導體」的開發與普及很可能在硬體建設上帶來革命性的變化。超導體 (supercondunctor)意味著某些導體在極低溫(比如接近絕對零度,-273.15℃)下,電阻將消失,而沒有阻力也意味著沒有電力的損耗。傳統銅線中,電子的流動與管壁原子的摩擦力將造成能量的消耗;而超導銅線巧妙地規避了這個問題,因為在極低溫環境下,原子將凝滯不動,電子也就能相當「通暢」地行經管線,線路壽命和產電效率也就能大幅躍升。但要實現極低溫的環境並非易事,因而近年來科學家正在嘗試開發室溫環境下的超導體,這意味著超導線圈能在日常生活中普及。

且由於超導本身的抗磁性(diamagnetism),比磁浮列車更酷炫的「懸浮」類型交通工具將成為常態,且由於不再有電能、摩擦力的損耗,你可以想像未來一旦超導磁浮列車與軌道網絡成功開發,只要輕輕一推,便能將一輛列車從台北車站高效地駛向墾丁、甚至車程用不上一小時。

電生磁、磁生電?

學習過中學物理的都知道,電與磁之間的作用是密不可分的;目前為止,大部分電子產品也都與「電流磁效應」(即安培定律,Ampère’s law)或「電磁感應」(即法拉第電磁感應定律,Faraday’s law of electromagnetic induction)有著密切關聯。

-----廣告,請繼續往下閱讀-----

比如搭乘捷運或者公車時,「悠遊卡」內部的線圈就運用了電磁感應的原理,產生的電流將資訊傳輸至讀卡機;「電風扇」的馬達則透過電流磁效應將電力轉為磁力、再轉為機械能帶動扇葉;「麥克風」運用的則是透過聲波振動磁場、藉由電磁感應產生電流、再透過電流磁效應傳遞到揚聲器。由此可知,工業革命與量子力學的發展將我們帶到了「電力的時代」,而磁力似乎一直是電力的副產物。

常見的「悠遊卡」內部,同樣使用了電磁感應的原理。 圖/wikimedia

而電腦硬碟也是如此,磁碟由磁性材料組成,需要用到線圈產生磁場、改變磁性材料的磁場方向;而透過讀寫頭可以感測、改變磁性材料的磁極,從而達成資料的讀寫。和上一段例子稍微不一樣的點在於:硬碟、磁碟的原理和材料「本身的」磁性有關,而非純粹基於電與磁之間的作用。雖然硬碟透過磁場的改變而達到讀寫資料的目的,但這是相當耗能、耗時的;相比之下,電能對我們而言容易操控得多。如果我們能開發出一種僅僅用「電場」就能改變記憶本身的磁性,那麼,這將在資訊儲存的領域造成革命性的進展。這就進一步帶入這次的主題——「磁電效應」(magnetoelectric effect, ME)。

磁電效應的產生機制

不同於宏觀的電磁效應,「磁電效應」通常與物質本身的微觀結構有關。磁電效應的機制取決於晶體本身的對稱性 (symmetry),舉例來說,線性磁電效應的產生必須滿足時間反演對稱性 (time-reversal symmetry)被打破的條件。首先,時間反演對稱性聽起來有些奇妙,但它的概念相當直白:物體在順著時間流以及倒轉的畫面是相同且無法區辨的;數學上來說,代入 t → -t,如果得出的結果依然是一樣的就說明了系統是具有時間反演對稱性的。

電流的磁效應就是一個反例:設想一個電路迴圈,逆時針的電流產生出向上的磁場(右手定則)。現在讓我們「倒帶」這段影像:你會發現磁場先消失、電流再變成順時針環繞;然而,順時針的電流「理應」產生向下的磁場,但在倒帶的影像中並非如此——這便是時間反演對稱性的打破。

-----廣告,請繼續往下閱讀-----

凝態物理中最常見的例子之一就是鐵磁體 (ferromagnet):想像一塊純鐵,在施加磁場後,其內分子的磁矩方向會順著磁場方向排列一致,也就是被「磁化」;然而,如果將畫面倒轉,會發現磁矩方向回歸不規律、接著磁場消失,但在物理上,你無法透過「去磁化」而關閉磁場;反之,即使關閉了磁場、磁化也依舊不因此而消失。換言之,鐵磁體打破了時間反演對稱性。

而磁電效應的產生通常要求磁性同時打破時間反演對稱性與鏡像對稱性 (mirror symmetry),也就是在鏡中世界的物理必須符合邏輯。在某些情況下(比如螺旋擺線形的指向),磁性會打破鏡像對稱性,造成了電極化(施加電場後,電介質內部的正負電荷會朝特定方向排列)。

這些看似尋常的對稱性往往是物理現象背後的推手,在數十年來場論的發展中,物理學家逐一發現:當我們從一些物理現象(比如電與磁)抽絲剝繭,會發現背後是繁複的數學方程式,而彼此之間蘊藏著不少「對稱性」聯繫著;從微觀以及數學的角度來說,正是因為某些對稱性的破缺,導致了一些物理現象的產生——磁電效應便是如此。

在統計力學與量子場論中,描述系統能量性質的哈密頓量(Hamiltonian)取決於格點(lattices),對於磁力而言,若我們改變了格點的形態,磁能也可能會降低,在這過程中,電極化便可能因此產生;而像這樣微觀層面上造成電與磁的「耦合」(coupling,通俗的說法就是交互作用),便是「磁電效應」的根源。

-----廣告,請繼續往下閱讀-----

因此,我們可以這樣概括:

磁電效應的產生肇始於微觀尺度下的對稱性破缺,因此,磁電效應並非無所不在,通常僅出現於擁有特定對稱性的晶體。

舉例而言,三氧化二鉻(Cr2O3)就是最早一批被證實有磁電效應存在的晶體。

單分子磁體 — — 量子產業的結合

在近年來的研究中,單分子磁體(single-molecule magents,SMM)的發現掀起了不少科學家競相研究。顧名思義,單分子磁體指的是帶有特定「磁性」的「分子」;更精確的說,是指擁有「超順磁性」(superparamagnetism)的分子結構,意味著在特定溫度下,一些具有磁性的顆粒將不易受外界磁場影響,以至於磁化性質近似於順磁體。當然,並不是所有分子化合物都可以作為單分子磁體,一般來說,它們通常都是含有「金屬」原子的「有機化合物」,例如最早被發現的 [Mn₁₂O₁₂(OAc)₁₆(H₂O)₄](簡稱Mn₁₂)。

由於單分子磁體扮演著類似於「奈米磁鐵」的角色,微小且具有磁性的特質,使它們可以被應用於磁鐵儲存體元件、或者量子位元 (qubits) ——相信不少人對於近年來相當熱門的「量子電腦」並不陌生,而作為這種電腦運算的基礎,單分子磁體本身的自旋性質以及磁存儲優勢,很可能改善現有的記憶容量,從而成為量子位元的候選者。

-----廣告,請繼續往下閱讀-----
加來道雄討論量子電腦。

那麼,單分子磁體和磁電效應搭得上關聯嗎?筆者在 2023 年曾參與一項由美國洛斯阿拉莫斯國家實驗室 (Los Alamos National Laboratory)資助的研究計畫,其中便包含了對於單分子磁體「磁電效應」的研究,研究指出某些單分子磁體(比如 [Fe₃O(O₂CPh)₆(py)₃]ClO₄.py,簡稱 Fe₃ 聚合物)在特定溫度條件下可以產生磁電效應,我們可以透過建造穿隧二極振蕩器(tunnel-diode oscillator,TDO)等方式來探測磁化率 (magnetic susceptibility),從而偵測磁電效應。值得注意的是,這項實驗也指出一項優勢:我們將能透過改變電場來實現磁電效應,而非像傳統硬碟技術那樣透過磁場改變電場特性。

磁電效應的未來與展望

磁電效應在近年來逐漸掀起學術界的研究熱潮,同時也陸續獲得業界的矚目。其中一個最有可能實現的願景,便是磁存儲技術的改善,因為我們將不用藉由磁碟上面的磁性材料與磁場來控制資料的存儲與讀寫;相比之下,電場比磁場容易操控些,磁電效應提供了一個新方案,只需透過一些特殊磁性物質(比如具有特定對稱性的晶體)、便能藉由電場改變晶體特性(諸如磁矩等等)。而對於晶體的候選者,單分子磁體具有相當的潛力,因為這類型的晶體很有可能延伸到量子位元的建構,從而在記憶存儲與量子電腦的同步開發下,帶動未來量子產業的發展。

21 世紀,更多前沿的技術不斷開展,無論是室溫超導等凝態物理的研究、或者是磁電效應與量子產業的結合,都向人們宣示著磁力時代的來臨。

參考文獻

  • 加來道雄(2019)。2100 科技大未來:從現在到 2100 年,科技將如何改變我們的生活。時報出版
  • M. Lewkowitz, J. Adams, N. S. Sullivan, Ping Wang, M. Shatruk, V. Zapf, and Ali Sirusi Arvij. (2023). Direct observation of electric field-induced magnetism in a molecular magnet. DOI: 10.1038/s41598–023–29840–1
  • G. Christou, D. Gatteschi, D. N. Hendrickson, and R. Sessoli. Single-Molecule Magnets. (2000). DOI: https://doi.org/10.1557/mrs2000.226
所有討論 1
Castaly Fan (范欽淨)_96
6 篇文章 ・ 4 位粉絲
科學研究者,1999年生於台北,目前於美國佛羅里達大學(University of Florida)攻讀物理學博士。2022年於美國羅格斯大學(Rutgers University)取得物理學學士學位,當前則致力於學術研究、以及科學知識的傳播發展。 同時也是網路作家、《隨筆天下》網誌創辦人,筆名辰風,業餘發表網誌文章,從事詩詞、小說、以及文學創作。

0

2
0

文字

分享

0
2
0
黑洞甜甜圈之後:宇宙噴火槍 3C 279 黑洞噴流影像現蹤跡!——《科學月刊》
科學月刊_96
・2020/04/27 ・3964字 ・閱讀時間約 8 分鐘 ・SR值 549 ・八年級

  • 文/陳明堂,中央研究院天文所及天文物理研究所研究員,兼天文所夏威夷運轉副所長。

去 (2019) 年,臺灣黑洞團隊與事件視界望遠鏡 (Event Horizon Telescope, EHT) 公布第一張黑洞照片。一年後,他們雖然沒有呈現新的黑洞照片,卻推出一張所未見的黑洞噴流影像。黑洞噴流如同兩隻金魚的發光體,起初讓研究團隊摸不著頭緒。所幸 EHT 強大的解析能力逐漸解開噴流的真面目,原來圖片左上的影像是噴流的源頭,右下則是逐步遠離的噴流。此外,這把宇宙等級的噴火槍其實是耀變體,在觀測中展現出許多令人驚奇的特性。

圖/Kim et al. (2020), EHT Collaboration

宇宙級的噴火槍:3C 279

在去年公布的首張黑洞影像後,事件視界望遠鏡團隊今 (2020) 年又再次發表另一張超高解析度的影像(下圖)。這次的目標是一個叫做 3C 279 的星體,影像呈現出一對橢圓狀的發光體。這兩個光體的位置左上右下,似乎處在一種隨遇而安的狀態。與去年發表的黑洞甜甜圈不同,反而像在一潭黝黑的池水中,偶爾浮上水面的兩條金魚。

今年 EHT 公布的 3C 279 影像。圖右是本次拍攝到的黑洞噴流,根據EHT 的分析,左上光影是噴流的源頭,右下光影則是正在遠離源頭的噴流。
圖片來源/J.Y. Kim (MPIfR), Boston University Blazar Program (VLBA and GMVA), and the Event Horizon Telescope Collaboration

3C 279 是一個類星體(quasar,下圖),位在室女座(Virgo Constellation,又稱處女座)附近,靠近春季大三角 (Spring Triangle) 的角宿一 (Spica)。

-----廣告,請繼續往下閱讀-----

雖然肉眼看不見 3C 279,但是從過去的觀測,天文學家知道它是銀河系外頭的另一個星系。它發出的訊號,從低能量的無線電波、紅外線到可見光、紫外線延伸至高能量的 X 光,應有盡有;甚至也會發出強烈的超高能量的射線。

藝術家筆下的類星體 (quasar) 想像圖。 圖/ESO/M. Kornmesser

與去年的 M87* 黑洞相比,為什麼這次的影像中沒有看到甜甜圈呢?

因為 3C 279 距離地球太遠了,相比之下,去年拍到 M87* 離地球「僅僅」5500 萬光年,而 3C 279 則幾乎是 100 倍遠的距離。不僅如此,根據天文學家的估計,3C 279 中心黑洞的大小還不到 M87* 的五分之一。由於又小又遠,因此以目前 EHT 的影像解析能力,還無法完全看到 3C 279的黑洞,所以在此影像中才看不到任何的甜甜圈。

-----廣告,請繼續往下閱讀-----

黑洞物理參數的比較

黑洞名稱

天空位置 距離地球 估計質量 天空視角

人馬座 A*
(Sgr A*)

人馬座
(射手座)

26000 光年

4 百萬個太陽

50 微角秒

M87*

室女座
(處女座)

55000 萬光年

65 億個太陽

38 微角秒

3C 279 室女座
(處女座)
53 億光年 10 億個太陽

0.06微角秒

看不見甜甜圈沒關係,EHT 還是有辦法解析!

雖然看不到黑洞,但是天文學家可以利用 EHT 的超級解析能力來研究黑洞外圍的物理現象。

當環繞黑洞的星際物質從吸積盤掉進黑洞時,並非所有物質都會進入黑洞之中。其中一部份的物質會以電漿能量包的形式,以極高的速度從黑洞的兩個極點朝外噴出,物質噴出的速度趨近光速,這就是所謂的噴流。目前科學家還不了解噴流的確切成因,但是一般認為是吸積盤與黑洞周遭的磁力場所造成,這也是 EHT  的科學家研究 3C 279 的主要動機。

人們對黑洞的了解是建立在愛因斯坦的廣義相對論。黑洞是經由重力塌縮 (gravitational collapse) 後形成的星體,它具有質量、自轉和事件視界 (event horizon)。根據理論,任何發生在事件視界裡面的資訊都無法傳遞到外面,所以對外界的觀察者而言,黑洞的物理性質來自於事件視界之外的空間,因此事件視界代表黑洞的視覺大小。

-----廣告,請繼續往下閱讀-----

2017 年 4 月的觀測期間,EHT 除了使用參與團隊的天文台之外,還另外動用其它兩組望遠鏡陣列,總共三組陣列透過不同的電波波長擷取 3C 279 的影像。其中,長波段的影像(超長基線陣列 VLBA 波長 7 mm)擷取到 3C 279 大範圍的相貌,影像明顯顯示左上角黑洞所在的熱點及從熱點衝往右下方向的噴流;中波段的影像(全球毫米波特長基線陣列 GMVA 波長 3 mm)把目光聚焦在靠近黑洞和噴流的起始點,期望從影像中能透露出關於噴流起源的訊息。但結果卻不盡人意,此波段呈現出來的影像幾乎是長波長的翻版,導致很難從結果中分辨出熱點和噴流之間的差別。

要看得更仔細, EHT 使用 8 座次毫米波電波觀測站同時朝熱點觀看,能提供更細微的影像解析能力(波長 1.3 mm),所得到的影像與中、長波段的結果相比,的確有出乎意料的發現。EHT 的影像出現左上與右下兩個獨立的部份,經由影像分析,EHT 團隊科學家認為右下部份訊號的移動方向與速度,和中、長波長影像中的噴流類似,因此他們認為右下部分的光影是大尺度噴流的一部份。此結論比較是可以預期,而沒有太多的爭論。可是該如何解釋位於左上的訊號就不是那麼容易了。

猶如宇宙噴火槍的耀變體

說到這裡,如果讀者對類星體有些認識,可能會猜測左上的光影應該是黑洞吸積盤發出的能量,黑洞就躲在巨大的吸積盤中間;而右下部份的狹長光影就是黑洞的噴流結構。噴流與吸積盤呈現接近 90 度的相對位置,此猜想符合天文學家想像中的類星體(下圖),可是問題卻沒有那麼簡單。

耀變體與類星體的示意圖,上圖的耀星體噴流方向非常靠近從地球的觀測視線。

-----廣告,請繼續往下閱讀-----

3C 279 是類星體中的特殊例子,特別的地方在於它的噴流方向非常接近觀測的視線。如果把噴流當作是一把宇宙噴火槍的火焰,那麼在地球上觀看 3C 279 的方向幾乎是往火槍的噴嘴裡頭看進去,高能量的噴流就只對著地球上的觀測者打出來。由於都卜勒效應 (Doppler effect) 的關係,此噴流看起來會特別亮,因此天文學家給這類型的類星體一個特殊的名字:耀變體(blazar,或稱耀星體)。

令人匪夷所思的觀測結果

換句話說,從地球的角度觀測,3C 279 除了具有一個非常強烈的中心訊號源外,天文家認為應該可以看到整個吸積盤才對,並認為從此角度觀測,吸積盤應該是接近圓形。但是在 EHT 的影像中,左上的光體卻是個狹長的橢圓形,該如何解釋異形怪狀的吸積盤,對理論學家是一大挑戰。

有一種解釋說法認為,左上與右下的光影其實是一樣的,都是噴流的高能量聚集的電漿能量包。二者不同之處在於,左上的能量包非常接近黑洞的噴嘴,並以更對準觀測者視線的角度而來,當然此角度並不完美,因此高能噴流的還是會在觀測的視線中投射出一個狹長的橢圓光影。雖然可以合理解釋觀察到的左上光影,但又該如何解釋左上與右下的能包移動的方向似乎不一樣?難道噴流會改變它的方向?

關於這一點,天文學家從其它類星體的觀測經驗,知道由於吸積盤附近的強大磁場作用,噴流的確有可能改變方向。在類星體中心的磁場作用下,噴流的路徑可能比上下 360 度翻滾的雲霄飛車還複雜,因而造成 EHT 觀測到的奇怪影像,所以目前 EHT 的團隊相信這是一個比較合理的解釋。

-----廣告,請繼續往下閱讀-----

觀測「超光速」移動的噴流?

這次 EHT 共花了4 天的時間觀測 3C 279,而每天都會產生一組非常類似的影像,經過仔細檢查,EHT 的團隊發現影像中的兩個光體的距離每天都有些不同。事實上,兩個光體正在分開中。此觀察符合前一段的論證:左上的光影代表噴流的源頭,右下是正在離開的噴流。

有了 EHT 望遠鏡的超級解析度,天文學家可估計噴流的移動速度。EHT 的團隊發現右下的能量正以超過 10 倍光速的速度離開噴流的源頭位置。讀者可能會納悶,超光速運動是有可能的嗎?

其實天文學家在半世紀前就已經知道,類似耀星體所發出來的噴流「看起來」會有超光速現象 (superluminal motion)。如此奇怪的現象是因為高能量的噴流速度接近光速,但是由於觀測角度的關係,從遠方看起來噴流的速度超過光速。此現象其實可以用相對論解釋,所以看起來超光速並不代表真正超越光速。

 

超光速運動真的是有可能的嗎?圖/GIPHY

-----廣告,請繼續往下閱讀-----

宇宙的更多故事等著被挖掘

53 億年前,那時太陽系正在慢慢成形,地球根本還沒存在。然而,隨著科學的進展,一個發生在距離地球 53 億光年外的物理現象,竟然被天文學家看到了!

此次 EHT 發布的影像雖然沒有如同去年 M87* 黑洞的影像引起一陣轟動,然而 3C 279 的影像透露出來的新資訊,似乎讓天文學家產生更多的問題與好奇。這就是科學發展,隨著 EHT 突破性的觀測儀器發展,人們將會看到許多前所未見的現象,並引導好奇的科學家們,更進一步了解所處在的宇宙。

突破性的觀測儀器發展,將會引導好奇的科學家們,更進一步了解所處在的宇宙。圖/GIPHY

2017 年參與 EHT 的八座望遠鏡中,臺灣參與建造或運作的一共有三座,包含夏威夷的次毫米波陣列 (SMA)、詹姆士克拉克麥克斯威爾望遠鏡 (JCMT) 和智利的阿塔卡瑪大型毫米波及次毫米波陣列 (ALMA),再加上貢獻運作經費與觀測人力,讓臺灣團隊占有顯著的地位,這也是總共 13 席的 EHT 董事成員,臺灣中研院就占兩席的原因。

-----廣告,請繼續往下閱讀-----

臺灣團隊一手主導的格陵蘭望遠鏡,直到 2018 年才加入 EHT,並參與 3C 279 的觀測。目前的觀測資料正在處理中,EHT 團隊期待格陵蘭望遠鏡的加入,能夠揭露更多噴流結構的細節,能讓天文學破解出黑洞周遭的祕密。如此的結果將會大大的提升臺灣天文學家在黑洞研究的地位,也讓臺灣獨特的貢獻受到世人的重視。

延伸閱讀

  • Jae-Young Kim et al., Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution, Astronomy & Astrophysics, 2020.

本文轉載自《科學月刊》 宇宙中的噴火槍—黑洞噴流影像現蹤跡

在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

 

科學月刊_96
249 篇文章 ・ 3436 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。