0

1
1

文字

分享

0
1
1

化學家的繩結挑戰!合成出最緊的分子結

活躍星系核_96
・2017/02/08 ・2551字 ・閱讀時間約 5 分鐘 ・SR值 555 ・八年級

文/林宇軒

分子結的合成,可以說是獲得 2016 諾貝爾化學獎分子機械合成領域的濫觴,不過至今二十八年間,化學家總共只合成出三種分子結。曼徹斯特大學化學系教授大衛·雷伊(David Leigh)團隊,在今(2017)年一月於《科學》(Science)期刊上,發表目前為止交錯次數最多、最緊的分子結,可進一步研究其結構強弱,未來有機會開發出更堅韌或更柔軟的絲線。

為什麼化學家要打「分子結」?

編織與繩結技術在人類歷史上,一直都扮演著很重要的角色,知曉如何操作這些技術有助於製作出堅韌的船纜、拔河繩,或是保暖衣物。而隨著科技的進展,科學家們也不斷研究如何製作出更強韌、更柔軟的絲線,以滿足現代各式各樣的需求。

若能在分子尺度強化纖維,例如將分子互相纏繞或打結,必然會是非常有力的策略。事實上,分子尺度的結(molecular knot)在自然界中就找得到,像是在生物體內,可發現一些由 DNA 形成的分子結(例如原核生物環狀 DNA 複製後,形成的結),或是在某些蛋白質的結構中也能發現其蹤跡。

-----廣告,請繼續往下閱讀-----

至今最緊、最複雜!交叉八次的分子結

化學家因此利用化學合成的知識與技術,嘗試人工合成分子結。第一個成功的便是最簡單的三葉結(trefoil knot),這是由 2016 諾貝爾化學獎得主索瓦(Sauvage)所帶領的團隊,於 1989 年合成出來的(延伸閱讀:2016諾貝爾化學獎)。不過,在拓樸學上,目前已知無法再被分解的基本結(prime knot)有六十億種,然而化學家從合成三葉結至今二十八年了,卻只合成出三葉結、八字結(eight-figure knot)、五葉結(pentafoil knot)。

目前已經成功合成的三種分子結,由左而右為:三葉結、八字結和五葉結。圖/取自 Science 期刊研究介紹影片
目前已經成功合成的三種分子結,由左而右為:三葉結、八字結和五葉結。圖/取自 Science 期刊研究介紹影片

曼徹斯特大學化學學院大衛·雷伊(David Leigh)教授所帶領的團隊,於今(2017)年一月在《科學》(Science)期刊上發表分子結合成的新進展,他們成功利用化學合成的方式,將四條分子鍊互相交錯,打出了一個在拓樸學上稱為 819 的分子結(如下圖),也就是繩子交錯八次的第十九號基本結。該結總共用了 192 個原子,形成了八個交叉的分子結,但整條分子鏈的長度僅有20奈米,是目前化學家所能合成的最複雜、也最緊的一種。

819 分子結的示意圖。
819 分子結的示意圖。

利用自組裝方法合成分子結

這麼微小的分子結當然很難用一般的方法繫出來,因此在合成方法的設計上,需要想辦法讓分子鏈能自行聚集、自己打結。

一般而言,如果化學家要將兩個分子拉近距離或是連接起來,要讓連接處的原子共享電子,也就是要讓兩個分子形成穩定的共價鍵,使彼此無法分離。不過分子無法控制自己的方向,而是隨意碰撞,使得只要遇到另一個分子上能分享電子的原子,就會發生反應,有機會產生錯誤構型、但相當穩定不會消失的分子,造成反應效率低落。

-----廣告,請繼續往下閱讀-----

化學家為了要有效合成分子結,又不希望有太多不必要的副產物,因此改變策略,利用吸引力較弱的分子間作用力,例如凡德瓦力或氫鍵,來連接兩分子。好處是,因為這些作用力比共價鍵弱,即使在碰撞過程中,反應出一個不希望出現的產物時,錯誤構型的分子仍有機會斷開連結,變回原本的兩個分子。利用這樣的特性,設計出來的分子能夠在碰撞的過程中,不斷吸引、折疊,或是連接起來,等於是讓分子自動去找最穩定的結構,這種方法稱為「自組裝(self-assembly)」。

這樣的方法廣泛的應用於獲得 2016 諾貝爾化學獎的分子機械領域中,當然,也用於合成分子結。雷伊教授的團隊使用於合成分子結的基本單位(building block)是一條分子鏈,他們利用金屬離子吸引分子鏈中帶有孤對電子的氮,把分子鏈都吸引在一起,再啟動第二步反應連結四條分子鏈,最後移除所有的離子,便完成分子結的合成(如下圖)。

改自David Leigh 實驗室網站的實驗示意圖。
改自David Leigh 實驗室網站的實驗示意圖。

事實上,雷伊教授的團隊在 2012 年時,便以完全相同的方法合成出五個交錯的星狀分子結(發表於《自然》(Nature)期刊,相關介紹點此)。與此篇文獻不同之處在於,他們稍微修改分子鏈末端的結構以及反應物的比例,產物即變成 819 分子結。

  • 819 分子結的 X 光晶體結構圖,有八個交錯處,總共有 192 個原子,包含四個亞鐵離子(Fe2+,紫色)、位於正中心的氯離子(Cl,綠色)以及形成分子主要骨架的碳(銀灰色)、氧(紅色)、氮(藍色)。結構中淺藍色長鏈狀分子為形成一個分子結的基礎單位,科學家利用自組裝(self-assembly)的方式將四長鏈組成分子結的結構,再將長鏈分子末端互相接合,即完成合成反應。

分子結的未來

雷伊教授在接受 RearchGate 的訪問中提到:「下一步的研究方向是將分子打成結的技術套用到紡織技術上,例如去研究在一條分子長鏈打了個結後,是否會影響這條分子鏈的強度?」化學家也可以利用新的合成方法試著做出其他種分子結,並研究它們結構上的結弱,以及打結如何影響一條分子長鏈的性質。

-----廣告,請繼續往下閱讀-----

就像當年由杜邦公司研發的 Kevlar 合成纖維,廣泛應用於許多以強韌性為重的物品,如軍用頭盔或防彈背心等;或是像極具發展潛力的強韌蜘蛛絲,科學家至今仍在研究是否能利用其強韌的特性,製作出更強的絲線,未來,或許有機會利用分子結的技術,開發出新式材料,製作出超柔韌聚合物絲線,使得紡織技術能有重大大進展。

 

原始研究:

參考資料:

※感謝臺灣大學化學研究所詹益慈老師實驗室程凱煜同學於原理部分提供的協助。

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
752 篇文章 ・ 120 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
非牛頓流體的火蟻群
小斑
・2013/12/24 ・606字 ・閱讀時間約 1 分鐘 ・SR值 546 ・八年級

-----廣告,請繼續往下閱讀-----

本文由民視《科學再發現》贊助,泛科學獨立製作

科學家長期關心火蟻這種會螫傷人、使人中毒,令人頭痛的入侵外來種,多半是在討論如何防止有劇毒的火蟻擴散,或是探討為什麼火蟻的螫傷會這麼痛。

看起來似乎沒有物理學家的事。不過,喬治亞理工學院的物理學家Zhongyang Liu和David Hu,對於一大群火蟻可以視情況而表現得像流體或是固體的現象很有興趣,是第一次在生物體上看到這種群體行為的二象性。

在11月美國物理學會的一場會議上,他們展示了上面的影片中的火蟻。一團火蟻可以像是糖漿一樣從管子中流出來,或是像一顆球一樣被壓下去還會彈回來。他們使用物理實驗用的流變儀精確測量蟻群作為流體的黏度和作為固體在不同壓力下的彈性,也同時發現在不同的狀態下,螞蟻的行為模式不同。

-----廣告,請繼續往下閱讀-----

蟻群若需要流動時,螞蟻會不斷移動,調整自己待在群體內,就像是很黏稠的液體。

當蟻群要保持形狀時,螞蟻就會緊緊地互相抱住,整個蟻群就會表現得像是橡膠一樣有彈性的固體。甚至形成「救生艇」躲避洪水

胡博士表示,這個研究結果可能可以應用於製造出自組裝機器人和可自我修補的材料,例如:用可以自動修補裂縫的材料建一座橋。畢竟螞蟻可是維持這種結構的箇中翹楚,當牠們互相搭在對方身上形成一座橋並通過時,牠們可是很快地補上結構上的任何缺口。

編譯自紐約時報 12月17日 Science Take

-----廣告,請繼續往下閱讀-----

該研究研討會摘要

小斑
16 篇文章 ・ 1 位粉絲
PanSci實習編輯。 一顆在各個學科間漂流的腦袋~

0

0
0

文字

分享

0
0
0
「4D列印」讓設計自己組裝起來!
dr. i
・2013/04/20 ・671字 ・閱讀時間約 1 分鐘 ・SR值 516 ・六年級

就當你覺得 3D 列印正夯的時候,「4D 列印」又逐漸浮上了台面。經過這個方法製作出來的零件,經過一段時間會自行組裝成為想要的物體!

根據麻省理工學院MIT Media Lab 的研究員提比斯(Skylar Tibbit)指出,所謂的「4D」是指 3D之外又多了一個在時間上的變化。

那麼什麼是「4D列印」呢?要解釋它就不得不先來講「自組裝(self-assembly)」。

自組裝是指一個物體會自行由分開來的零件部位,組成一個特定的形體。這在自然領域中也會發生,好比說細胞分裂時DNA的自我複製的過程,或是植物生長時的向光性,非常有效率而且不容易出錯,只要把環境控制好。

-----廣告,請繼續往下閱讀-----

而最近幾年,研究人員想要把這個概念應用在人造的複合式材料上,讓建築師和設計師等等,都可以利用這樣的材料做出能夠自我組裝的生活用品。

讓材料自組的方法都不一樣,以本文開頭影片中的長條狀的管子為例,當它被放在透明的液體中時(水?),某些部份就開始膨脹或收縮,造成整個形體的彎曲,最後組成一個固定且事先設計好的形狀。那麼這個管子是如何製作的呢?就是利用 3D列印的技術,將多種特性的材質組合在一起,在要彎曲的部份用不同的材質,就可以到達局部彎曲的效果!

以後會不會IKEA買回來的傢俱不用動手就可以自行組裝了呢?好期待呀!!

(資料來源:sjet.usThe Guardian、TED)

-----廣告,請繼續往下閱讀-----

延伸閱讀:
巨觀自組裝材料的設計 

轉載自 :: dr. i ::  新發現 | 新科技 |  新生活 |  新藝術 欲轉貼請註明文章出處

dr. i
33 篇文章 ・ 0 位粉絲
小時候的啓蒙師父是小叮噹,偶像是馬蓋先,並崇拜發明燈泡的愛迪生,當時志向是發明會飛的車。在歐洲旅居十二年後回台灣,目前投身科技與藝術的跨界整合以及科學教育和傳播,現任國立台灣師範大學科技與文創講座兼任助理教授。dr. i 一輩子最大的幻想,是能夠使用時光機和隱形風衣。如果您恰巧擁有其中一項,請拜託用以下的連絡方式連絡!http://facebook.com/newartandscience