分享本文至 E-mail 信箱
學術引用格式
MLA
APA
EndNote(.enw)

化學家的繩結挑戰!合成出最緊的分子結

文/林宇軒

分子結的合成,可以說是獲得 2016 諾貝爾化學獎分子機械合成領域的濫觴,不過至今二十八年間,化學家總共只合成出三種分子結。曼徹斯特大學化學系教授大衛·雷伊(David Leigh)團隊,在今(2017)年一月於《科學》(Science)期刊上,發表目前為止交錯次數最多、最緊的分子結,可進一步研究其結構強弱,未來有機會開發出更堅韌或更柔軟的絲線。

為什麼化學家要打「分子結」?

編織與繩結技術在人類歷史上,一直都扮演著很重要的角色,知曉如何操作這些技術有助於製作出堅韌的船纜、拔河繩,或是保暖衣物。而隨著科技的進展,科學家們也不斷研究如何製作出更強韌、更柔軟的絲線,以滿足現代各式各樣的需求。

若能在分子尺度強化纖維,例如將分子互相纏繞或打結,必然會是非常有力的策略。事實上,分子尺度的結(molecular knot)在自然界中就找得到,像是在生物體內,可發現一些由 DNA 形成的分子結(例如原核生物環狀 DNA 複製後,形成的結),或是在某些蛋白質的結構中也能發現其蹤跡。

至今最緊、最複雜!交叉八次的分子結

化學家因此利用化學合成的知識與技術,嘗試人工合成分子結。第一個成功的便是最簡單的三葉結(trefoil knot),這是由 2016 諾貝爾化學獎得主索瓦(Sauvage)所帶領的團隊,於 1989 年合成出來的(延伸閱讀:2016諾貝爾化學獎)。不過,在拓樸學上,目前已知無法再被分解的基本結(prime knot)有六十億種,然而化學家從合成三葉結至今二十八年了,卻只合成出三葉結、八字結(eight-figure knot)、五葉結(pentafoil knot)。

目前已經成功合成的三種分子結,由左而右為:三葉結、八字結和五葉結。圖/取自 Science 期刊研究介紹影片

目前已經成功合成的三種分子結,由左而右為:三葉結、八字結和五葉結。圖/取自 Science 期刊研究介紹影片

曼徹斯特大學化學學院大衛·雷伊(David Leigh)教授所帶領的團隊,於今(2017)年一月在《科學》(Science)期刊上發表分子結合成的新進展,他們成功利用化學合成的方式,將四條分子鍊互相交錯,打出了一個在拓樸學上稱為 819 的分子結(如下圖),也就是繩子交錯八次的第十九號基本結。該結總共用了 192 個原子,形成了八個交叉的分子結,但整條分子鏈的長度僅有20奈米,是目前化學家所能合成的最複雜、也最緊的一種。

819 分子結的示意圖。

819 分子結的示意圖。

利用自組裝方法合成分子結

這麼微小的分子結當然很難用一般的方法繫出來,因此在合成方法的設計上,需要想辦法讓分子鏈能自行聚集、自己打結。

一般而言,如果化學家要將兩個分子拉近距離或是連接起來,要讓連接處的原子共享電子,也就是要讓兩個分子形成穩定的共價鍵,使彼此無法分離。不過分子無法控制自己的方向,而是隨意碰撞,使得只要遇到另一個分子上能分享電子的原子,就會發生反應,有機會產生錯誤構型、但相當穩定不會消失的分子,造成反應效率低落。

化學家為了要有效合成分子結,又不希望有太多不必要的副產物,因此改變策略,利用吸引力較弱的分子間作用力,例如凡德瓦力或氫鍵,來連接兩分子。好處是,因為這些作用力比共價鍵弱,即使在碰撞過程中,反應出一個不希望出現的產物時,錯誤構型的分子仍有機會斷開連結,變回原本的兩個分子。利用這樣的特性,設計出來的分子能夠在碰撞的過程中,不斷吸引、折疊,或是連接起來,等於是讓分子自動去找最穩定的結構,這種方法稱為「自組裝(self-assembly)」。

這樣的方法廣泛的應用於獲得 2016 諾貝爾化學獎的分子機械領域中,當然,也用於合成分子結。雷伊教授的團隊使用於合成分子結的基本單位(building block)是一條分子鏈,他們利用金屬離子吸引分子鏈中帶有孤對電子的氮,把分子鏈都吸引在一起,再啟動第二步反應連結四條分子鏈,最後移除所有的離子,便完成分子結的合成(如下圖)。

改自David Leigh 實驗室網站的實驗示意圖。

改自David Leigh 實驗室網站的實驗示意圖。

事實上,雷伊教授的團隊在 2012 年時,便以完全相同的方法合成出五個交錯的星狀分子結(發表於《自然》(Nature)期刊,相關介紹點此)。與此篇文獻不同之處在於,他們稍微修改分子鏈末端的結構以及反應物的比例,產物即變成 819 分子結。

  • 819 分子結的 X 光晶體結構圖,有八個交錯處,總共有 192 個原子,包含四個亞鐵離子(Fe2+,紫色)、位於正中心的氯離子(Cl,綠色)以及形成分子主要骨架的碳(銀灰色)、氧(紅色)、氮(藍色)。結構中淺藍色長鏈狀分子為形成一個分子結的基礎單位,科學家利用自組裝(self-assembly)的方式將四長鏈組成分子結的結構,再將長鏈分子末端互相接合,即完成合成反應。

分子結的未來

雷伊教授在接受 RearchGate 的訪問中提到:「下一步的研究方向是將分子打成結的技術套用到紡織技術上,例如去研究在一條分子長鏈打了個結後,是否會影響這條分子鏈的強度?」化學家也可以利用新的合成方法試著做出其他種分子結,並研究它們結構上的結弱,以及打結如何影響一條分子長鏈的性質。

就像當年由杜邦公司研發的 Kevlar 合成纖維,廣泛應用於許多以強韌性為重的物品,如軍用頭盔或防彈背心等;或是像極具發展潛力的強韌蜘蛛絲,科學家至今仍在研究是否能利用其強韌的特性,製作出更強的絲線,未來,或許有機會利用分子結的技術,開發出新式材料,製作出超柔韌聚合物絲線,使得紡織技術能有重大大進展。

 

原始研究:

參考資料:

※感謝臺灣大學化學研究所詹益慈老師實驗室程凱煜同學於原理部分提供的協助。

想要耳聽分享,嘴吃熱炒、手領好書、同時認識一大群愛科學的朋友嗎?

「生猛科學」的特色是:

  1. 只在台灣南部舉辦(精準一點的定義是雲林以南,一直到屏東)。
  2. 只找當地最生猛的科學人擔任講者。
  3. 只談在地的科學,或是在地人最關注的科學。
  4. 只在最生猛的生猛熱炒舉辦。

我們希望透過「生猛科學」系列活動,更認識在地科學社群,並且讓在地的科學除了讓更多在地人知道以外,也透過PanSci的網絡傳得更遠。好久沒辦了想要見見最生猛的你,限量 25 個名額!報名還可獲得科普好書一本,原價800元,現在只要600元!

[報名 10/1 (日)生猛科學@高雄]

關於作者

活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia