分享本文至 E-mail 信箱

學術引用格式

MLA (點一下全選)

APA (點一下全選)

EndNote(.enw)

好球?壞球?打者判斷好壞球的大腦歷程──WBC經典賽系列文(1)

除了直球與變化球的判斷之外,好壞球的判斷也是一個成功的打者必須具備的條件之一。然而,一個成功的打者到底為什麼能夠成功呢?他在打擊時會注意到投手的哪些細節?他的大腦又如何判斷好壞球呢?這一篇文章要來聊聊,打擊者如何判斷一顆直球是否會進到好球帶。

觀察投手的小訣竅

一個職業的棒球選手,在決定是否應該出棒時,只有短短的0.1秒。因此,能否爭取到更多的時間,判斷投手的球是否會進入好球帶,便是一個打者能否成功擊球的關鍵之一。過去的實驗發現,一個pro級的棒球運動員和一個棒球門外漢,在觀察投手投球動作時,有截然不同的差異。當投手做出預備投球(set)的姿勢之後,一直到投手抬起自由腳、跨步、自由腳落地的這一段時間,無論是專家或是從來沒有打過棒球的人,他們的視線都會落在投手的臉和頭上[1];然而,當投手舉起投球手,一直到球出手的這一段時間,身為一個專業的打者,會將視線專注在預期的出手點(release point)[1][2],以及投手的手肘上[3],然而,不專業的打者則會到處亂看[2],或是把視線停留在投手的投和臉上[1][2]。

1

如果你是一名專業的打者,那麼你的視線會在投手出手時,固定在投手的手肘和出手點上;如果你是一個不曾受過專業棒球訓練的小迷弟/迷妹,則會因為投手太帥而一直看著他的臉。圖引自TAKEUCHI & INOMATA(2009)

而專業運動員與非專業運動員,觀察投手投球時這零點幾秒的差異,則可能會反映在好壞球的判斷,以及出棒的時機點之上。過去的研究發現,專業的棒球打者比沒有受過棒球訓練的人,更能夠快速而正確地判斷出該球是否為好球,並快速地對好球做出攻擊[1][4][5]。事實上,專業的棒球運動員決定是否出棒所花的時間,不僅比非專業的棒球運動員來得快,甚至也比網球選手來得越快,而且一個技巧越好的棒球員,他所花費的判斷時間就越少[6]。

_mg_8572

當投手預備出手時,專業的打者會把視線落在投手的手肘,以及預備出手的位置。 圖/作者攝影

打者判斷好壞球時的大腦變化

看完了一個專業打者如何判斷好壞球之後,接著,我就要帶大家來剖開打者的大腦搂(誤)。過去關於打者判斷好壞球的研究,並不像判斷直球或變化球的研究一般納入腦波儀(EEG)的研究,僅有功能性磁振造影(fMRI)的研究而已,因此很難判斷打者在判斷好壞球時,動用的腦區誰先誰後。然而,過去腦科學提供的研究成果,還是足以讓我們來推敲,打擊者在判斷好壞球時,大腦經歷了哪一些變化。

就如同打者在判斷球種是直球或變化球時一般,打者在判斷好壞球時,也會動用到顳葉中區(middle temporal ,MT),因為這一個腦區有助於察覺運動中的物體[7]。除此之外,打者在判斷好壞球時,還會運用到輔助眼區(Supplementary eye field,SEF)、額葉眼區(frontal eye field,FEF)、上部頂小葉(superior parietal lobule,SPL),以及右腦的腹外側前額葉(ventrolateral prefrontal cortex,VLPFC)[8],以下,我將為大家一一介紹,這些腦區在好壞球判斷時,可能扮演著哪些功能。

輔助眼區與額葉眼區──打者追蹤球路軌跡的兩大腦區

首先先來介紹和眼動有關的兩大腦區:輔助眼區(SEF)和額葉眼區(FEF)。輔助眼區主要是在掃視目標[9][10]及追蹤物體[11][12][13]時會動用到的腦區,除了這些功能之外,過去以猴子作為研究樣本的單一神經記錄( single neurons recording)實驗也發現,猴子在進行好壞球判斷時,會動用到輔助眼區的兩組神經,其中一組被實驗者稱之為好球神經(strike neurons)──這些神經只在猴子判定實驗刺激會通過實驗螢幕上設定的好球帶時,這一組神經才會反應,若猴子認定該刺激不會通過好球帶,則這組神經則不會反應;另一組神經則是線索神經(cue neurons)──這些神經在猴子尚未判定一個刺激是否會通過好球帶,還在做決定時會產生反應,也就是說,這些神經可能有助於打者判定一顆球會不會通過好球帶。

除此之外,實驗者也發現,當線索神經出現反應後258毫秒,若該球被猴子判定為好球,則好球神經會產生反應,接著再過62.5毫秒之後,猴子的眼睛會開始追蹤那一顆球的軌跡[14]。若這個實驗能夠成功套用到人類在打擊的實戰情形,則它的反應歷程應該會如此:投手投出球→輔助眼區的線索神經蒐集資訊,判定該球的軌跡是否會通過好球帶,若會,則啟動好球神經,觸發眼球追蹤球路準備攻擊;反之則不會啟動好球神經,也不會做出攻擊的準備。

除了輔助眼區之外,額葉眼區也參與了判斷好壞球的認知歷程[8],在刺激出現之前的預備狀態(preparatory set),額葉眼區就會開始產生反應[15],除此之外,額葉眼區也具有抑制眼動反應的功能,在這個fMRI的實驗之中,實驗者要求受試者在判斷「該刺激不會通過螢幕上的好球帶」時,受試者要將視線放在螢幕正中央的注視點上。實驗結果發現,當受試者判斷該刺激為壞球時,比判斷該刺激為好球時,會造成額葉眼區出現更大的活化量[8],這可能和這個腦區涉及到抑制眼動有關[16]。

motor_cortex_monkey

輔助眼區(Supplementary eye field,SEF)與額葉眼區(frontal eye field,FEF)圖/維基百科

接著介紹大腦計算、判斷球路軌跡是否會通過好球帶的兩大認知腦區:上部頂小葉與右腦的腹外側前額葉。上部頂小葉和推算球路軌跡有關,當打者在判斷投手出手的球會不會進入好球帶時,很可能就是運用到這一個腦區來進行計算。上部頂小葉屬於後側頂葉(posterior parietal cortex)的一部分,而後側頂葉則涉及到了空間圖像(spatialimagery)的判讀[17][18]、空間注意力(spatial attention)[19],以及追蹤動態物體軌跡的注意力(attentional tracking of motion trajectories)[20]。

gray726_superior_parietal_lobule

上部頂小葉屬於後側頂葉的一部分。 圖/維基百科

至於右腦的腹外側前額葉,則和抑制計畫好的行動有關[21]。當一個打者忍不住追打一顆壞球時,可能就是投手的球路成功騙過了打擊者,使得這個腦區未能成功抑制打者揮棒的衝動,因而遭到三振出局。除此之外,這個腦區也和規則處理有關──因為打者並不是每一顆球來都要揮棒,而是要挑選進入好球帶的球進行攻擊(至少在這個實驗中的規定情境下是如此),因此,這個實驗涉及到了一套既定規則,和右腦腹外側前額葉的規則處理有關(rule processing)[22],可能是這個原因,才讓這個腦區出現了顯著的活化。

儘管這些關於打者判斷好壞球以及判斷直球與變化球的實驗,提供了我們一些打者在打擊時可能的大腦變化歷程,然而這些大多都只是實驗室中的模擬研究而已,真正的打擊者在打擊時,除了專注投手的球之外,還要抑制觀眾的吵雜聲、處理內心對於比賽勝負的壓力,甚至得執行打帶跑、觸擊等戰術,打擊時的大腦歷程或許會更為複雜。不過這些研究也為棒球科學提供了一些更新一步的見解,或許未來有助於教練們透過模擬實境等方式訓練打擊者的大腦,讓科學得以結合實際的棒球訓練,使得比賽變得更加複雜而精采。

延伸閱讀:

  1. T. Takeuchi &  K. Inomata (2009).VISUAL SEARCH STRATEGIES AND DECISION MAKING IN BASEBALL BATTING.Perceptual and Motor Skills, 2009, 108, 971-980.
  2. Shank, M., & Haywood, K. (1987) Eye movements while viewing a baseball pitch. Perceptual and Motor Skills, 64, 1191-1197.
  3. Kato, T., & Fukuda, T. (2002) Visual search strategies of baseball batters: eye movements during the preparatory phase of batting. Perceptual and Motor Skills, 94, 380386.
  4. Paull, G., & Glencross, D. (1997) Expert perception and decision making in baseball. International Journal of Sport Psychology, 28, 35-56.
  5. Nakamoto, H., & Mori, S. (2008) Sport-specific decision making in a go/nogo reaction task: differences among nonathletes and baseball and basketball players. Perceptual and Motor Skills, 106, 163-170.
  6. Kida, N., Oda, S., & Matsumura, M. (2005) Intensive baseball practice improves the Go/Nogo reaction time, but not the simple reaction time. Cognitive Brain Research, 22, 257-264.
  7. Marchand, W.R., et al., Putamen coactivation during motor task execution. Neuroreport, 2008. 19(9): p. 957-60.
  8. S.J.Heinen, J.Rowland,B.Lee & A.R.Wade(2006)An Oculomotor Decision Process Revealed by Functional Magnetic Resonance Imaging. The Journal of Neuroscience,26(52),13515–13522.
  9. Schall JD. Neuronal activity related to visually guided saccadic eye movements in the supplementary motor area of Rhesus monkeys. J Neurophysiol 66: 530–558, 1991.
  10. Schlag J and Schlag-Rey M. Evidence for a supplementary eye field. J Neurophysiol 57: 179–200, 1987.
  11. HeinenSJ.Single-neuron activity in dorsomedial frontal cortex during smooth pursuit eye movements. Exp Brain Res 104: 357–361, 1995.
  12. Heinen SJ and Liu M. Single-neuron activity in the dorsomedial frontal cortex during smooth pursuit eye movements to predictable target motion. Vis Neurosci 14: 853–865, 1997.
  13. Petit L and Haxby JV. Functional anatomy of pursuit eye movements in humans as revealed by fMRI. J Neurophysiol 81: 463–471, 1999.
  14. Kim YG, Badler JB, Heinen SJ (2005) Trajectory interpretation by supplementary eye field neurons during ocular baseball. J Neurophysiol 94:1385–1391.
  15. ConnollyJD,GoodaleMA,GoltzHC,MunozDP (2005) fMRIactivationin the human frontal eye field is correlated with saccadic reaction time. J Neurophysiol 94:605–611.
  16. Hanes DP, Patterson II WF, Schall JD (1998) Role of frontal eye fields in countermandingsaccades:visual,movement,andfixationactivity.JNeurophysiol 79:817–834.
  17. FormisanoE,LindenDE,DiSalleF,TrojanoL,EspositoF,SackAT,GrossiD, Zanella FE, Goebel R (2002) Tracking the mind’s image in the brain I: time-resolved fMRI during visuospatial mental imagery. Neuron 35:185–194.
  18. Gauthier I, Hayward WG, Tarr MJ, Anderson AW, Skudlarski P, Gore JC (2002) BOLD activity during mental rotation and viewpoint-dependent object recognition. Neuron 34:161–171.
  19. SchluppeckD,GlimcherP,HeegerDJ (2005) Topographicorganizationfor delayed saccades in human posterior parietal cortex. J Neurophysiol 94:1372–1384.
  20. Culham JC, Brandt SA, Cavanagh P, Kanwisher NG, Dale AM, Tootell RB (1998) Cortical fMRI activation produced by attentive tracking of moving targets. J Neurophysiol 80:2657–2670.
  21. Aron AR,Fletcher PC, Bullmore ET, Sahakian BJ, Robbins TW (2003) Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci 6:115–116.
  22. Bunge SA (2004) How we use rules to select actions: a review of evidence from cognitive neuroscience. Cogn Affect Behav Neurosci 4:564–579.

泛科學姊妹站 NPOst 公益交流站 推出【NPOst 公益學院】,將與你一起探討,新世代工具如何主導未來,如何結合公益應用,讓你社群翻倍、擁有過人的溝通力和精準的開源力!

覺得複雜議題很難解釋嗎?(勞基法是什麼可以吃嗎)覺得外面流言蜚語很難做風險管理嗎?覺得社群都很難懂、義賣只能大喊大叫很困擾嗎?無論你是求知若渴的 NPO 從業人員,或時刻觀注公益的新生代創業家,快參加 3/17(五)的課程說明會,掌握公益學院的課程內容 !

活動詳情: 2017 NPOst 公益學院|掌握新工具,成就新時代

關於作者

Psydecative──貓心偵探(龔佑霖)

國中的時候很著迷於偵探小說,跟著那些名偵探們,一步一步的抽絲剝繭,從線索裡找出真相。 到了大學之後接觸心理學,發現心理學不也是這樣的東西嗎?隨著線索一步一步的探索,在最悲傷的事情裡面找回力量,在最脆弱的傷痕裡面找回希望。也許心理學沒辦法給我們世界的真相,但是它卻能帶領我們,去選擇這個世界的模樣。 我是貓心偵探,很喜歡貓。貓是一種很奇特的動物,兼顧孤傲與溫柔,就如同心理師一般,在和個案保持界線的同時,溫柔的陪伴個案成長。 個人攝影粉專: https://www.facebook.com/psyphotographer/ 個人專欄粉專: https://www.facebook.com/psydetective/