0

1
0

文字

分享

0
1
0

2016《自然》精選八大科學事件:除了重力波,還有什麼?

陳柏成 (Po Cheng Chen)
・2016/12/28 ・4013字 ・閱讀時間約 8 分鐘 ・SR值 574 ・九年級

-----廣告,請繼續往下閱讀-----

編譯/Nihil

從今年美國的總統大選,到太空中所發生的災難性技術故障,對於科學研究者來說,2016 年似乎是個動盪的一年。然而與此同時,科學家們也宣佈了諸多令人矚目的科學成果,例如觀測重力波、DNA 來自三個人的嬰兒以及人工智慧打敗李世乭等。在這歲末時分,就讓我們與您分享,來自《自然》(Nature)期刊精選出 2016 年的八大科學新聞。

重力波,I got you!

相鄰黑洞的靠近引發重力波的漣漪。圖/Public Domain
相鄰黑洞的靠近引發重力波的漣漪。圖/Public Domain

在今年 2 月 11 日,研究者們宣稱,他們在太空中找到了重力波(gravitational wave)的證據,方式為透過雷射干涉重力波天文台(Laser Interferometer Gravitational Wave Observatory, LIGO)的探測器,在 2015 年 9 月偵測到來自 10 億年前,兩個黑洞碰撞所產生重力波的訊號。

這項觀測的重要性在於,它進一步證實了愛因斯坦在廣義相對論的預言,認為大質量的天體相互碰撞,或是超新星爆發等天文事件,都可能引發波的漣漪;同時這項觀測也再次為黑洞的存在提供證據。就在 LIGO 宣稱結果的數週後,歐洲太空總署的雷射干涉太空天線開路者號(LISA Pathfinder)任務,針對新的技術進行了相關測試。該技術將有機會比 LIGO 觀測到更大、且更遠的天體所產生的重力波信號。

-----廣告,請繼續往下閱讀-----

新世界秩序的誕生!

川普在2016年當選美國總統。圖/By Gage Skidmore, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=51041412
川普在2016年當選美國總統。圖/By Gage Skidmore, CC BY-SA 3.0, wikimedia commons.

紛亂的 2016 年美國總統大選,就在唐納.川普(Donald Trump)於眾人跌破眼鏡的勝利中劃下句點。對於科學研究者來說,最關注的在於成為總統後的川普,在政策上將會如何對待科學。事實上,從川普的競選過程中可以發現,其並未凸顯出科學的重要性。另外川普的一些觀點是顯而易見的,例如他認為氣候變遷(climate change)本身是場由中國主導的騙局,並由此做出承諾美國將會退出巴黎氣候變遷協議;順帶一提的是,他還認為孤獨症和童年時期注射疫苗有所關聯。

當川普的政府開始成形之際,科學家們針對新總統對科學的漠不關心提出反對。在今年 11 月尾,包含 22 名諾貝爾得主在內的 2300 位科學家聯合提交給川普一封信,希望能「堅持科學的誠信與獨立性的高標準,以用來因應當前公共衛生及環境健康的威脅」。另外,如果各位還記得,今年 6 月 23 日英國宣佈脫離歐盟,這件事同時也震驚了當地的科學界。對於科學家來說,他們擔心這將會使他們失去每年來自歐盟的補助,以及和其他歐盟國家之間的交流。但略感欣慰的是,英國表示,政府仍將會持續提供科學家研究經費直到 2020 年。

大膽前進太空吧!

被陽光照射一部份的木星。圖/NASA/JPL-Caltech/SwRI/MSSS/Mai
被陽光照射一部份的木星。圖/NASA

在 2016 年,不時出現一些太空任務未盡理想的消息。今年 3 月,日本宇宙航空研究開發機構(Japan Aerospace Exploration Agency,JAXA)所研製的 X-ray 天文衛星「瞳」(Hitomi)在發射一週後失敗了。根據研究人員推論,失敗的理由在於軟體上的失誤,進而造成太空飛行器的旋轉超出控制。7 月的時候,美國國家太空總署(National Aeronautics and Space Administration, NASA)的探測器「Juno」抵達木星,然而由於主引擎的問題,造成火箭升空的延遲,使得運行的橢圓軌道更加接近星球。雖然這樣的結果使得比原定計劃還要緩慢,不過「Juno」仍持續收集木星的大氣及磁層的數據。另一方面,歐洲太空總署在今年 10 月時,作為 ExoMars 任務的其中一項環節──Schiaparelli著陸器出現問題,原因在於測量上的失誤,導致降落傘在不對的時間點開啟。

以上各種失敗雖讓人有些氣餒,但對太空學界而言,2016 年還是有一些令人振奮的成果。中國在今年 8 月時,發射了第一顆量子衛星(quantum satellite),目標在於進行太空中相關安全量子通訊的測試。而在 9 月時,中國也在貴州完成了世界最大的單口徑電波望遠鏡。到了 11 月,中國發射了長征五號,並且在 10 月及 11 月期間送了兩名太空人在天宮二號太空實驗室生活了一個月,這些都創下了過去的紀錄。

-----廣告,請繼續往下閱讀-----

CRISPR的爭議

基因編輯技術在 2016 年獲得唐獎,也有更多的研究者開始針對人類胚胎使用CRISPR-Cas9技術。圖/NIH Image Gallery@flickr
基因編輯技術在 2016 年獲得唐獎,也有更多的研究者開始針對人類胚胎使用 CRISPR-Cas9技術。圖/NIH Image Gallery@flickr

CRISPR-Cas9 是一個至今仍持續發展的新基因編輯工具。在今年 10 月 28 日,一名在中國成都華西醫院的肺癌患者,成為了史上第一位進行CRISPR-Cas9技術的人。在臨床試驗中,研究者會試圖讓一些原控制免疫系統的細胞失去作用,並讓已編輯的基因增加免疫效果,用以對抗癌症。然而關於這種技術的商業前景仍有不確定性。美國專利與商標局宣稱將「干預」兩個研究團隊的訴訟時,關於基因編輯技術的專利權爭論可說達到了最高峰。

另一方面自今年起,有更多的研究者開始針對人類胚胎使用 CRISPR-Cas9 技術。當然,這樣的方式引起不少關於該研究領域的爭議,理由在於設計嬰兒的可能性。話雖如此,目前仍有國家允許這樣的研究,其中包含了中國、英國以及瑞典。他們認為透過這樣的技術,將可幫助人類未來的發展。

氣候危機的到來

綠色的艾菲爾鐵塔,象徵巴黎協議的通過。圖/usa.gov@flickr
綠色的艾菲爾鐵塔,象徵巴黎協議的通過。圖/usa.gov@flickr

來自 174 個國家及歐盟的代表們,在 4 月 22 日地球日這天共同簽署了巴黎氣候協定。不過事實上若要讓協定生效,需要超過 55 個國家、並且其加總的溫室氣體排放量要超過全球 55% 才能成功。而最大的進步莫過於在今年 9 月,佔據全球共 38% 溫室氣體的兩個國家—美國和中國,正式加入巴黎協定。在一週後,巴西及其他 30 多個國家也陸續加入,最後由歐盟在 10 月 5 日正式底定這場協議,並在 11 月 4 日生效。

不過,以上這些並非是唯一為氣候變遷所做的努力。在今年 10 月 6 日,聯合國的國際民用航空組織(International Civil Aviation Organization)決定將針對國際航班減少碳排放量。而在 10 月 15 日,共有 197 個國家同意修改蒙特婁議定書(Montreal Protocol),藉由逐步淘汰氫氟碳化物等溫室氣體來達到保護臭氧層的目標。在 10 月 28 日,相關國家也打破長達 4 年的僵局,在南極洲旁的 Ross 海成立了世界最大的海洋保護區。

-----廣告,請繼續往下閱讀-----

茲卡病毒的肆虐

巴西因茲卡病毒爆發而導致的相關先天缺陷例如小頭症案例,已成為全球公共衛生的重大議題。圖/Centers for Disease Control and Prevention - http://www.cdc.gov/ncbddd/birthdefects/images/microcephaly-comparison-500px.jpg, Public Domain, https://commons.wikimedia.org/w/index.php?curid=46674502
巴西因茲卡病毒爆發而導致的相關先天缺陷例如小頭症案例,已成為全球公共衛生的重大議題。圖/Centers for Disease Control and Prevention, Public Domain, wikimedia commons.

今年 2 月,世界衛生組織(World Health Organization, WHO)聲明,巴西那些因茲卡病毒爆發而導致的相關先天缺陷案例,已成為全球公共衛生的重大議題。這些先天缺陷包含小頭症(microcephaly),意為新生兒擁有比一般正常嬰兒更小尺寸的頭腦。然而縱使茲卡病毒在美洲肆虐,事實上並沒有造成想像中大規模的小頭症及其他茲卡所導致的先天缺陷案例。即使在巴西,高比例的小頭症患者也只存在於東北部,因此研究人員開始猜想,這種疾病的背後,可能同時存在多種因素的影響

到了 11 月 18 日,世界衛生組織宣佈茲卡病毒與先天缺陷之間的相關案例不再是公共衛生的重大事件,但會持續研究茲卡病毒傳染造成的影響,並發展疫苗。許多國際研究單位也將繼續為相關問題提出解答,例如受感染的孕婦,會有多少比例生出具有先天缺陷的嬰兒。

鬥智遊戲的頂尖對決!

圖/Prachatai@flickr
圖/Prachatai@flickr

今年 3 月,來自 Google 旗下公司「DeepMind」所研發的人工智慧 AlphaGo,在圍棋比賽上擊敗了世界知名棋手李世石。而在 10 月時,研究者揭示了另一項人工智慧產品,它能在不需預先擁有相關知識的條件下,了解倫敦地鐵複雜的路線分佈。這些複雜的程序結合記憶與從經驗學習的能力,將人工智慧又更進一步的朝人類邁進。

除了讓人工智慧做以上這些事外,透過大量的深度學習(deep learning),它同時也能降低 60% 由機器進行語言翻譯所造成的失誤,並幫助物理學家尋找新的材料

-----廣告,請繼續往下閱讀-----

來自三人的DNA

藉由替換缺陷的DNA,避免母親的下一代遺傳到相關疾病。圖/ZEISS Microscopy@flickr
藉由替換缺陷的DNA,避免母親的下一代遺傳到相關疾病。圖/ZEISS Microscopy@flickr

經過十多年的研究,透過輔助生殖技術(Assisted-Reproductive Technology),進而達到結合三個人的 DNA 研究已取得突破。這些研究的目的之一,在於避免孩子從上一代的粒線體中遺傳到疾病。今年 9 月,研究人員在墨西哥診所宣佈第一個利用此技術的嬰兒誕生了

另外,就在今年 12 月 15 日,根據科學家們建議,英國的人類生殖及胚胎學管理局(Human Fertilisation and Embryology Authority)允許了該項技術在臨床上的使用,並將在 2017 年開始上路。

以上,為本年度《自然》(Nature)期刊精選的八大科學新聞,其中醫學相關領域就佔了三項,包含茲卡病毒、基因編輯以輔助生殖技術,可謂豐收的一年;另外,雖然本次人工智慧領域只佔一項,但筆者相信,假以時日,一旦 AI 領域有更大突破,當「科學研究」本身都能藉更臻於完美的人工智慧之手操刀時,在往後的年度科學新聞中,它將會是顆耀眼的巨星。

原始來源:

-----廣告,請繼續往下閱讀-----
文章難易度
陳柏成 (Po Cheng Chen)
12 篇文章 ・ 5 位粉絲
熱愛自然科學,曾擔任PanSci實習編輯,現於美國夏威夷大學就讀博士班。如有任何問題,歡迎來信:consciencecpc@gmail.com

2

2
2

文字

分享

2
2
2
諦聽宇宙深處的低吟,宇宙低頻重力波訊號代表的意義——《科學月刊》
科學月刊_96
・2023/11/01 ・3782字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/陳哲佑
    • 任職於日本理化學研究所,專長為黑洞物理、宇宙學、重力理論等。
    • 熱愛旅行、排球與珍珠奶茶
  • Take Home Message
    • 今(2023)年 6 月,北美奈赫茲重力波天文臺(NANOGrav)團隊觀察到宇宙中的低頻重力波。
    • NANOGrav 團隊利用數個脈衝星組成「脈衝星陣列」(PTA),測量各脈衝星訊號到達的時間,計算不同訊號的到達時間是否存在著相關性。
    • PTA 得到的重力波訊號相當持續,沒有明確的波源。科學家推測此訊號可能來自多個超大質量雙黑洞系統互繞而產生的疊加背景。

2015 年 9 月,位於美國的雷射干涉儀重力波天文臺(Laser Interferometer Gravitational-Wave Observatory, LIGO)成功偵測來自雙黑洞碰撞的重力波訊號(請見延伸閱讀 1)。

這個發現不僅再次驗證愛因斯坦(Albert Einstein)「廣義相對論」的成功,更引領人類進入嶄新的重力波天文學時代。到了現在,我們不僅能使用各種電磁波波段進行觀測,還多了重力波這個強而有力的工具能夠窺探我們身處的宇宙,甚至還有同時結合兩者的多信使天文學(multi-messenger astronomy)註1,皆能帶給人類許多單純電磁波波段觀測無法觸及的資訊(請見延伸閱讀 2)。

如同不同波段的電磁波觀測結果為我們捎來不同的訊息,重力波也有不同的頻譜,且頻譜與產生重力波的波源性質有非常密切的關係。以雙黑洞碰撞為例,系統中黑洞的質量與碰撞過程中發出的重力波頻率大致上成反比,因此當系統中黑洞的質量愈大,它產生的重力波頻率就愈低。

目前地球上的三個重力波天文臺:LIGO、處女座重力波團隊(The Virgo Collaboration, Virgo),以及神岡重力波探測器(Kamioka Gravitational wave detector, KAGRA, or Large-scale Cryogenic Gravitational wave Telescope, LCGT)都受限於干涉儀的長度,只對頻率範圍 10~1000 赫茲(Hz)的重力波有足夠的靈敏度,此範圍的重力波對應到的波源即是一般恆星質量大小的雙黑洞系統。

-----廣告,請繼續往下閱讀-----

然而,來自超大質量黑洞互繞所發出的重力波頻率幾乎是奈赫茲(Nano Hertz,即 10-9 Hz)級別,如果想要探測到此重力波,就需要一個「星系」規模的重力波探測器。雖然這聽起來彷彿天方夜譚,但就在今年 6 月,北美奈赫茲重力波天文臺(North American Nanohertz Observatory for Gravitational Waves, NANOGrav)的團隊利用「脈衝星計時陣列」(pulsar timing array, PTA)成功地觀測到這些低頻重力波存在的證據。

以不同方式觀察不同頻率的重力波

與電磁波相似,重力波也有不同的頻率。不同頻率的重力波會對應到不同性質的波源,且需要不同的方式觀測。圖/科學月刊 資料來源/Barack, et al. 2018

NANOGrav 如何觀測低頻重力波?

讀者聽過脈衝星(pulsar)嗎?它是一種高速旋轉且高度磁化的中子星(neutron star)註2,會從磁極放出電磁波。隨著脈衝星的旋轉,它的電磁波會以非常規律的時間間隔掃過地球,因而被身處於地球上的我們偵測到,就像是海邊的燈塔所發出的光,會規律地掃過地平面一般。由於脈衝星的旋轉模式相當穩定,掃過地球的脈衝就如同宇宙中天然的時鐘,因此在天文學上有相當多的應用——甚至可以用來觀測重力波。

利用脈衝星觀測重力波的第一步,首先要記錄各個脈衝星的電磁脈衝到達地球的時間(time of arrival),並且將這些訊號與脈衝星電磁脈衝的理論模型做比對。

如果訊號和理論模型相符,那麼兩者相減後所得到的訊號差(residual)只會剩下一堆雜訊;相反的,如果宇宙中存在著重力波,並且扭曲了該脈衝星和地球之間的時空,那麼兩訊號相減之後就不會只有雜訊,而會出現時空擾動的蹤跡。

-----廣告,請繼續往下閱讀-----
利用數個脈衝星組成的脈衝星計時陣列,可用來尋找宇宙中低頻的重力波訊號。圖/Tonia Klein, NANOGrav 

然而以觀測的角度來看,即便我們從來自單一脈衝星的訊號中發現訊號差出現偏離雜訊的跡象,也不能直接推論這些跡象一定是來自重力波。畢竟科學家對脈衝星的內部機制和脈衝傳遞的過程也並未完全了解,這些未知的機制都可能會使單一脈衝星的訊號差偏離雜訊。

因此為了要判斷重力波是否存在,就必須進行更進一步的觀測:利用數個脈衝星組成脈衝星陣列,測量每個脈衝星訊號到達的時間,並且計算這些不同脈衝星訊號的到達時間是否存在某種相關性。

舉例來說,如果脈衝星和地球之間沒有重力波造成的時空擾動,那麼即便每顆脈衝星的訊號差都出現偏離雜訊的跡象,彼此之間的訊號也會完全獨立且不相干;反之,如果脈衝星和地球之間有重力波經過,這些重力波便會扭曲時空,不僅會改變這些脈衝訊號的到達時間,且不同脈衝星訊號到達的時間變化也會具有某種特定的相關性。

根據廣義相對論的計算,一旦有重力波經過,不同脈衝星訊號之間的相關性與脈衝星在天球上的夾角會滿足一條特定的曲線,稱為 HD 曲線(Hellings-Downs curve)。

-----廣告,請繼續往下閱讀-----

科學家以兩顆脈衝星為一組觀測單位,藉由觀測多組脈衝星的訊號、計算它們之間的相關性,再比較這些數據是否符合 HD 曲線,就能夠進一步推斷低頻重力波是否存在。值得一提的是,由於重力波訊號非常微弱,用來作為陣列的脈衝星必須有非常穩定的計時條件,因此一般會選擇自轉週期在毫秒(ms)級別的毫秒脈衝星作為觀測對象。

NANOGrav 在今年 6 月發布的觀測結果就是利用位於波多黎各的阿雷西博天文台(Arecibo Observatory,已於 2020 年因結構老舊而退役)、美國的綠堤望遠鏡(Robert C. Byrd Green Bank Telescope)和甚大天線陣(Very Large Array, VLA)觀測 68 顆毫秒脈衝星。

他們分析了長達 15 年的觀測數據後,發現這些脈衝星訊號的相關性與 HD 曲線相當吻合,證實了低頻重力波確實存在於我們的宇宙中。

除了 NANOGrav,其他團隊例如歐洲的脈衝星計時陣列(European Pulsar Timing Array, EPTA)、澳洲的帕克斯脈衝星計時陣列(Parkes Pulsar Timing Array, PPTA)、印度的脈衝星定時陣列(Indian Pulsar Timing Array, InPTA),以及中國的脈衝星計時陣列(Chinese Pulsar Timing Array, CPTA)等,皆得到相符的結果。

-----廣告,請繼續往下閱讀-----

NANOGrav 觀測結果帶來的意義

與先前 LIGO 觀測到的瞬時重力波訊號不同,目前利用 PTA 得到的重力波訊號是相當持續的,而且並沒有較明確的單一波源,反而像是由來自四面八方數個波源組成的隨機背景訊號。

打個比方,LIGO 收到的重力波訊號像是我們站在海邊,迎面而來一波一波分明的海浪,每一波海浪分別對應到不同黑洞碰撞事件所發出的重力波;而 PTA 的訊號則是位於大海正中央,感受到隨機且不規則的海面起伏。

目前對這些奈赫茲級別的重力波訊號最合理也最自然的解釋,是來自多個超大質量雙黑洞系統互繞而產生的疊加背景。若真是如此,那這項發現將對天文學產生重大的意義。

過去科學界對於如此巨大的雙黑洞系統能否在可觀測宇宙(observable universe)的時間內互繞仍普遍存疑,如果PTA觀測到的重力波真的來自超大質量雙黑洞互繞,那代表這類系統不僅存在,它們的出現還比過去我們預期的更為頻繁,且產生的訊號也更強。

-----廣告,請繼續往下閱讀-----

NANOGrav 的觀測結果

橫軸為脈衝星陣列中,兩脈衝星位置之間的夾角;縱軸為訊號之間的相關性;藍色數據點為 NANOGrav 15 年的觀測結果;黑色虛線為 HD 曲線。可看出數據點的分布與 HD 曲線相當吻合。圖/科學月刊 資料來源/Agazie et al. 2023

不過除了雙黑洞系統,也有其他「相對新奇」的物理機制也可能產生這樣的重力波背景,包含早期宇宙的相變、暗物質,以及其他非標準模型的物理等。若要從觀測的角度去區分這些成因,最重要的關鍵在於,能否從隨機背景中找到特定的波源方向。

如果是雙黑洞系統造成的重力波,勢必會有來自某些方向的訊號比較強;反之,如果是早期宇宙產生的重力波,那麼這些重力波將會隨著宇宙的膨脹瀰漫在整個宇宙中,因此它們勢必是相當均向的。

為了找到波源方向,提升訊號的靈敏度成為了當務之急。而若要提升 PTA 的靈敏度,最主要的方式有兩種——其一是將更多的脈衝星加入陣列;其二則是延長觀測的時間。

目前,不同的 PTA 團隊已經組成國際脈衝星計時陣列(International PTA)互相分享彼此的脈衝星觀測資料。隨著觀測技術的進步,解密這些奈赫茲級別的神祕重力波將指日可待。

-----廣告,請繼續往下閱讀-----

註解

  1. 相較於過往只能以可見光觀測宇宙,多信使天文學能利用多種探測訊號,如電磁波、微中子、重力波、宇宙射線等工具探索宇宙現象,獲得更多不同資訊及宇宙更細微的面貌。
  2. 質量較重的恆星在演化到末期、發生超新星爆炸(supernova)後,就有可能成為中子星。

延伸閱讀

  1. 林俊鈺(2016)。發現重力波!,科學月刊556,248–249。
  2. 金升光(2017)。重力波獨白落幕 多角觀測閃亮登場,科學月刊576,892–893。
  3. NANOgrav. (Jun 28 2023). Scientists use Exotic Stars to Tune into Hum from Cosmic Symphony. NANOgrav.
  • 〈本文選自《科學月刊》2023 年 10 月號〉
  • 科學月刊/在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。
所有討論 2
科學月刊_96
249 篇文章 ・ 3481 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

1

3
0

文字

分享

1
3
0
平民登月計劃?核融合真的來了?——2023 最值得關注十大科學事件(下)
PanSci_96
・2023/01/31 ・3226字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

在上一篇中,我們介紹了將在 2023 年發生的五個醫藥健康大事件。

延伸閱讀:
用迷幻藥治憂鬱?基因編輯療法將通過批准?——2023 最值得關注十大科學事件(上)

這次我們轉向能源、宇宙與科技領域,從首趟平民月球之旅、物理學的標準模型新發現,再到第一個核廢料永久儲存設施正式營運!

No. 5 氣候與能源衝擊

世界各國能否聽從科學家的警告,採取實際行動,朝淨零之路前進嗎?看起來不行。由於疫情與俄烏戰爭,去年 11 月在埃及舉辦的「聯合國氣候變化會議 COP27」幾乎是原地踏步。

不過還是有一個重要的決議,那就是建立氣候損失和損害基金。根據協議,排放量較高的富裕國家將在經濟上補償受氣候變化影響最大的貧窮國家。「過渡委員會」將於 2023 年 3 月底前舉行會議,提出資金運用的建議,並在 11 月的 COP28 會議上提交給世界各地的代表。

-----廣告,請繼續往下閱讀-----

至於核能的部分,新型核分裂發電與核融合發電,都會在 2023 年有所進展。

另外,世界上第一個核廢料儲存設施,今年將在芬蘭西南海岸外的奧爾基洛托島正式啟用。這個由芬蘭政府於 2015 年批准建造的地下處置庫,將負責封存超過 6500 噸有放射性的鈾;這些鈾會被裝在銅罐中,再用厚厚的粘土覆蓋,最後埋在地下 400 公尺深的花崗岩隧道內,預期將被密封數十萬年,直到輻射水平達到完全無害的程度。

另一個好消息是,今年 1 月 1 日就任的巴西總統——魯拉(Luiz Inácio Lula da Silva),將推翻前任總統開放的雨林開發,保護生態與文化。

然而深海則有新危機。若 2023 年 7 月前,聯合國的國際海床管理局(ISA)沒能讓各國對深海採礦管理準則達成共識,那海底的礦產資源可能會被某些政府和企業盯上,不受限制地開挖,海洋生態將迎來浩劫……。

-----廣告,請繼續往下閱讀-----

許多關於能源的抉擇包含了科學和政治,能源短缺也激勵了綠能跟潔淨能源的投資力道及採用意願;至於今年還會不會發生更棘手的麻煩?使能源轉型更加舉步維艱。

巴西新任總統推翻雨林開發,保護生態與文化。圖/Envato Elements

No. 4 超越標準模型

2022 年 4 月,美國費米國家加速器實驗室的物理學家,公佈了渺子 g-2 實驗的首批結果;這項實驗研究了被稱為「渺子的短命粒子在磁場中的行為」。

過去 50 年來,標準模型(Standard Model)[註]的理論預測通過了所有測試,但其實物理學家普遍認為標準模型肯定還不完備,並且認為可以從渺子身上找到破綻;如果今年再次公佈更精確的數據,顯示渺子的磁矩比理論預測來得大,那就代表還有新粒子等待被發現,而標準模型就得修正。

位於中國廣東的江門地下的微中子實驗觀測站,也將在今年展開尋找超越標準模型的物理學之旅;利用位於地下七百公尺的探測器,來準確測量微中子的振盪。

-----廣告,請繼續往下閱讀-----

註:標準模型為能描述強核力、弱核力、電磁力這三種基本力,以及所有物質基本粒子的理論。

另外,物理學家們在今年會有升級的新設備。第一個是 LCLS-II 直線加速器相干光源 2 代(Linac Coherent Light Source-II),它將創造終極 X 射線機器,看到分子內原子的運動!另一個則是新的重力波獵人—— Matter-Wave Laser Interferometric Gravitation Antenna(物質波雷射干涉重力天線);這個設施把銣原子冷卻成「物質波」,能夠梳理黑洞和其他超大質量天體碰撞產生的時空漣漪,揪出現有重力波設施錯放的事件,甚至可以幫我們尋找暗物質!

而在瑞典隆德附近、由歐洲 17 國攜手成立的歐洲散裂中子源(ESS),將使用史上最強大的線性質子加速器產生強中子束,來研究材料的結構;雖然預計 2025 年才會完工,但於今年迎來第一批研究人員,開始實驗。

No.3 就是要抬頭看天空

許多人心中 2022 年科學事件第一名,正是韋伯太空望遠鏡傳回的驚人照片;沒有意外的話,韋伯在 2023 年會繼續大顯身手,揭露星系演變的真相,與遙遠系外行星的生命印記,找尋地球之外的生命。

今年還會有更多驚喜!來自於新的太空望遠鏡,如:由歐洲太空總署開發的歐幾里得太空望遠鏡,今年發射後將繞行太陽六年,拍攝宇宙的 3D 圖;日本宇宙航空研究開發機構 JAXA 的 X 射線成像、光譜任務 XRISM,則是繞地球軌道運行的太空望遠鏡,將探測來自遙遠恆星和星系的 X 射線,預計在今年 4 月升空。

-----廣告,請繼續往下閱讀-----

在地球上,位於智利的薇拉魯賓天文台(Vera C. Rubin Observatory)將於今年 7 月啟用;其望遠鏡採用特殊的三鏡面設計,相機包含超過 30 億像素的固態探測器,每三個夜晚就能掃描整個南天,也是監測可能危害地球小行星的守護者之一。而世界上最大的可動望遠鏡——新疆奇台射電望遠鏡(QTT)也將在今年完工;其口徑達 110 公尺,能夠觀測天空中 75% 的星星。

詹姆斯.韋伯太空望遠鏡(James Webb Space Telescope,JWST)去年發布的圖片——史蒂芬五重星系。圖/維基百科

No. 2 好多月球任務,還有一個鐵小行星

2022/12/11 這天,包括阿拉伯聯合大公國的拉希德漫遊者月球車、NASA 的月球手電筒立方衛星、以及日本的白兔 HAKUTO-R M1 登陸器,共同搭乘 SpaceX 的獵鷹九號發射升空;HAKUTO-R 如今正緩緩帶著拉希德前往月球,預計在今年 4 月著陸。

而印度太空研究組織 ISRO 的第三次探月任務月球飛船 Chandrayaan-3,預計今年年中發射,並於月球的南極著陸。

還有首次民間人士的月球之旅 dearMoon。SpaceX 的 Starship 將載著 11 位平民上太空,包含創業家、明星跟 YouTuber;如果 Starship 成功發射,將會成為史上最大的火箭。Blue Origin 的 New Glenn 也預計在今年首度發射。若兩者都成功,將推動太空科學與商業進入新時代,讓進入太空的成本大幅下降。

-----廣告,請繼續往下閱讀-----

歐洲太空總署的木星冰月探測器 JUICE 也將在今年 4 月升空,並於 2031 年抵達木星系統;目標是研究木星以及三顆衛星:木衛二三四的環境,了解他們有沒有可能支持生命存在。

NASA 將於今年 10 月後發射延遲了一年的 Psyche 靈神星小行星軌道飛行器,其研究對象為 16 Psyche 靈神星小行星;科學家認為它可能不是一般的小行星,而是一顆年輕行星裸露的鐵核心。如果今年順利發射,將在 2029 年到達。 

看來對太空迷來說,2023 又將是幸福熱鬧的一年。

由超大型望遠鏡(Very Large Telescope,VLT)拍攝的靈神星。圖/維基百科

No.1 GPT-4 跟 AlphaFold 的衝擊波襲來

借過借過,AI 已預約登上 2023 年最大科學事件!

-----廣告,請繼續往下閱讀-----

如果 GPT-3.5 開發的 ChatGPT 還沒有嚇到你,那 GPT-4 就要來了!

而在科學領域,DeepMind 的 AlphaFold 帶來的衝擊不亞於 ChatGPT;它能夠根據蛋白質的一維氨基酸序列,準確預測折疊後的三維形狀,對生物與醫療研究影響非常大。 AlphaFold 2 於 2021 年發布了另外 2 億多種蛋白質的結構,幾個月來,來自 190 個國家/地區、超過 50 萬名研究人員,使用 AlphaFold 研究了 200 萬種不同的蛋白質結構。另外,Meta 的 ESMFold 的速度甚至又比 AlphaFold 快 60 倍,預測的蛋白質超過 6 億種!

基於 AlphaFold 跟 ESMFold 的研究量將大大增加,這些龐大新知識也將開始應用於各學科,包括新疫苗和塑膠開發。

法規管制總是比科技進步緩慢,隨著 AI 越來越強大、滲透到社會的方方面面,各國政府必須回應。歐盟在今年將通過人工智慧法案,為使用人工智慧制定標準,其他國家和科技巨頭將密切關注,跟進與調適。

-----廣告,請繼續往下閱讀-----
圖/GIPHY

以上就是「2023 最值得關注十大科學事件」,你最期待的是哪一個?哪個是你心中的 No.1?又有哪些我們漏掉了,但你覺得該列入的呢?歡迎留言討論!

歡迎訂閱 Pansci Youtube 頻道 鎖定 2023 年的每一個科學大事件!

所有討論 1
PanSci_96
1219 篇文章 ・ 2184 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

4
0

文字

分享

0
4
0
用迷幻藥治憂鬱?基因編輯療法將通過批准?——2023 最值得關注十大科學事件(上)
PanSci_96
・2023/01/30 ・2348字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

在 2022 年裡,我們見證了低軌通訊衛星在戰爭中的作用、Omicron 肆虐與次世代疫苗、韋伯太空望遠鏡捕捉系外生命印記、銀河中心黑洞初次現身、人類精準回擊小行星、台灣 CAR-T 首例、特斯拉的平價人形機器人、與超強的 LaMDA 跟 ChatGPT AI 語言模型!

2023 年能更刺激嗎?有哪些值得我們關注的科學大事呢?

我們綜合整理了 Nature、Science、Scientific American、NewScientist、富比世雜誌、經濟學人雜誌,結合泛科學的觀察與期待程度,提出這份「2023 最值得關注十大科學事件」;今年的科學界將會熱鬧非凡,令人目不暇給!

No.10 病原體通緝名單

2022 年 11 月,法國科學家在 bioRxiv 上發表了從西伯利亞永凍土中復活的多種病毒;這些「殭屍病毒」中最古老的已經有 48500 歲,在溫度升高後,這些病毒都復甦了過來……。雖然這批古老病毒只能感染變形蟲,但也暗示著,冰層之下存在更多正在休眠、極可能對哺乳動物或人類造成危險的病毒。

-----廣告,請繼續往下閱讀-----

隨著氣溫與海溫升高,這些不定時病毒炸彈正在醞釀著。

世界衛生組織將在今年發布修訂後的「重點病原體清單」,至少 300 位科學家嚴謹審查超過 25 個病毒與細菌家族的各種證據,針對目前還未知、但可能造成全球疫情的未知疾病 Disease X 做出預測,擬出一份優先名單。被列入名單的病原體通緝犯將會被重點研究調查,以利未來開發疫苗、治療與診斷技術。

被列入優先名單的病原體將會被重點研究調查。圖/Envato Elements

No.9 新一代 mRNA 疫苗

乘著在 COVID-19 大流行間快速成熟的 mRNA 疫苗研發平台,許多疫苗正蓄勢待發。

BNT 在 2023 年初針對瘧疾、肺結核和生殖器皰疹的 mRNA 疫苗開始了首次人體實驗;也與輝瑞合作,研發能降低帶狀皰疹發病率的疫苗。另一家 mRNA 大廠莫德納,也在研發能預防生殖器皰疹和帶狀皰疹病毒疫苗。

-----廣告,請繼續往下閱讀-----

除此之外,莫德納開發的黑色素瘤 mRNA 疫苗與默克的藥物合併療法,在去年底公布中期臨床試驗結果,顯示能降低 44% 的死亡率及復發風險,臨床試驗也將在 2023 年進入最後階段。

這些將在 2023 年揭曉的成果,將拓展人類使用 mRNA 疫苗對抗疾病的手段。

新一代 mRNA 疫苗正蓄勢待發。圖/Envato Elements

No.8 CRISPR 療法獲批准

由於之前的臨床試驗結果很不錯,CRISPR 基因編輯療法極有可能會在今年首次正式通過批准!

這種 exagamlogene autotemcel(exa-cel)療法,是由美國波士頓的 Vertex Pharmaceuticals 和英國劍橋的 CRISPR Therapeutics 公司共同開發。用超簡化的方式來説,治療方法就是先收集一個人自己的幹細胞,接著用 CRISPR-Cas9 編輯修正幹細胞中有缺陷的基因,最後再把這些細胞輸回人體。

-----廣告,請繼續往下閱讀-----

Vertex 公司預計會在 3 月向美國 FDA 申請批准,讓 exa-cel 療法可以用於治療 β-地中海貧血或鐮狀細胞病的患者。

然而,隨著療法上市,相關的討論預期也將甚囂塵上……。

CRISPR 基因編輯療法極有可能在今年正式通過批准。圖/Envato Elements

No.7 阿茲海默有藥醫

美國 FDA 將在年初宣布,Eisai 製藥公司和 Biogen 生技公司開發的 lecanemab,是否可以用來治療阿茲海默患者。

該藥物就像一台大腦專用的掃地機器人,為單克隆抗體,可以清除大腦中積累的 β 澱粉樣蛋白;在包含了 1785 名早期阿茲海默患者的臨床試驗中顯示,比起安慰劑,能減緩認知能力下降的速度約 27%。不過,有些科學家認為這效果只能說是還好,也有些擔心藥物不夠安全。

-----廣告,請繼續往下閱讀-----

無獨有偶,另一款由美國的 Anavex Life Sciences 開發的阿茲海默藥物 blarcamesine,目前也正在臨床試驗階段;它能啟動一種可提高神經元穩定性及相互連接能力的蛋白質,就像是幫神經元升級了連線速度與品質,估計在今年會持續帶來新消息。

blarcamesine 能幫神經元升級連線速度與品質。圖/Envato Elements

No.6 迷幻療法

2023 年,也極可能立下迷幻藥被用於醫療用途的里程碑。

多個相關臨床研究都進展到第三期,例如為 PTSD 創傷後症候群設計的新療法,結合了心理治療與 MDMA 亞甲二氧甲基苯丙胺,也就是所謂的搖頭丸,在臨床三期中,67% 的患者不再被診斷有 PTSD。

而來自迷幻蘑菇的裸蓋菇素,則被用來治療難治型憂鬱症,其臨床二期結果令人鼓舞。233 名難治型憂鬱症患者分成三組,在服用不同劑量裸蓋菇素後,每一組的憂鬱症量表分數都降低;而劑量最重的那組,其降幅最顯著。

-----廣告,請繼續往下閱讀-----

最後是 K 他命,竟然成為對抗酒精使用障礙的療法!酒精使用障礙包括酗酒、酒精依賴、成癮等,86% 的臨床試驗病人,在接受新療法後六個月,持續戒除酒精。

然而,也有科學家警告這些樂觀訊息中有炒作成份,就讓我們持續關注吧!

迷幻藥能有效治療病情!?圖/Envato Elements

看到這你可能會想,第六到十名怎麼都是跟醫療健康有關的大事件呢?別急!在下一篇中,我們接著介紹更精采的第五到第一名!

也歡迎大家跟我們分享,你知道的、即將在 2023 年發生的科學大事件!

-----廣告,請繼續往下閱讀-----
期待在 2023 年即將發生的科學大事件!圖/GIPHY

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1219 篇文章 ・ 2184 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。