0

0
0

文字

分享

0
0
0

俄羅斯失敗之火星任務Phobos-Grunt太空船預定於1月16日重返地球大氣

臺北天文館_96
・2012/01/11 ・2644字 ・閱讀時間約 5 分鐘 ・SR值 552 ・八年級

-----廣告,請繼續往下閱讀-----

根據俄羅斯太空專家的計算,任務失敗的Phobos-Grunt太空船預定將於2012年1月10~21日期間重返大氣(re-entry),但最可能的時間點是在臺北時間2012年1月16日5:00(±18小時),歐洲太空總署(ESA)則預測可能在1/14~15(±5天)重返大氣;俄羅斯太空局(Roscosmos)預測最可能墜落地點是在西伯利亞至北美洲之間的北太平洋海域,美國相關機構則預測最可能落在阿富汗西南方,臺灣地區不在目前預測的墜落範圍內。俄羅斯官方指出應有約20~30個、總重約200公斤以下的碎片抵達地球表面。不過詳細的墜落時間和地點還需等到愈接近重返大氣時,才能愈確定。根據Spaceflight101.com網站1/6最新消息,目前這艘太空船的軌道為176km×221km,每88.5分鐘環繞地球一周,軌道傾角為51.4度,換言之:南北緯51.4度之間的區域都需提高警覺、事先防範。

Phobos-Grunt Sample Ground Tracks. Photo: Orbitron


重返大氣

Phobos-Grunt太空船相當龐大,總重達13,500公斤,比2011年9月NASA重返大氣的UARS氣象衛星和10月重返大氣的德國ROSAT天文衛星都大許多;它絕大部分質量是有毒且可能爆炸的推進燃料—聯氨( hydrazine)和四氧化二氮(Dinitrogen Tetroxide,N2O4),達11,150公斤左右。各國對這部分可能的影響感到恐懼,不過,各太空垃圾機構都表示:太空船有球形的鋁製儲存槽,一旦太空船開始衝進濃密的地球大氣層中,與空氣摩擦的結果將導致鋁製儲存槽被加熱到無法承受的地步,儲存槽中的燃料漏出並在空氣中燃燒,應該不會有殘餘的燃料可抵達地面。此外,因為推進器在寒冷的太空環境中待了數個月之久,燃料也被冷到凍結,所以在太空船重返大氣過程中,大氣摩擦加熱的部分熱能得用來解凍燃料而損耗。所以推進燃料部分造成的影響應該不大。

科學家預估:這艘太空船重返大氣之後可能存活並撞擊地面的部分,可能是重達7.5公斤的重返艙(Entry capsule)。當初這部分是設計來取得火衛一表面的土壤,並送返地球以供科學家研究用,故相當堅固耐熱;此外在重返艙中還有細菌、真菌和其他微生物等,是作為生命實驗用途,希望測試往返地球進行太空旅行時可能對人類產生的危害。

Phobos-Grunt太空船中攜有少量鈷-57(Cobalt-57)放射性同位素,乃太空船上用以分析火衛一樣本的光譜儀的一部份;不過應該會在重返大氣過程中全數銷毀,不會對地面有任何影響。

-----廣告,請繼續往下閱讀-----

雖說除了重返艙之外的其餘部分,但一般衛星重返大氣過程中,大約會有20%~40%抵達地球表面。考量俄羅斯太空船通常建造的比他國還結實堅固,殘留的質量可能比前述比例還高。若再考慮推進燃料可能全部爆炸的話, Spaceflight101.com的太空專家認為將有多達475~950公斤的Phobos-Grunt殘骸抵達地面。

除開上述各零件外,太空專家們唯一無法確定的超級因素就是Phobos-Grunt上、中國與俄羅斯合作的螢火1號(Yinghuo 1)。由於中國一直沒有公開詳細的技術、毒物或任何可能產生危險的零件等資訊,太空專家們無從判斷與估計這個探測器究竟會不會在重返大氣過程中完全燒毀、還是會殘餘多少重量、多少數量的碎片。


Phobos-Grunt火星任務

Phobos-Grunt. Image: Lavochkin Association Phobos-Grunt火星任務是俄羅斯中斷了20年之久才終於成行的太陽系探測計畫,是俄羅斯的21世紀第一個行星探測計畫,也是前蘇聯到現今的俄羅斯,有史以來最大的太陽系探測器,主要目標是火星兩顆衛星之一的火衛一(Phobos);太空船上還搭載了主要由中國製作的「螢火」探測器,預計2014年將火衛一樣本帶回地球。

這艘太空船於臺北時間2011年11月9日凌晨4:16,以相對於赤道約51.4的軌道傾角,利用Zenit 2SB火箭發射升空。然而卻在第二節火箭脫離後,無法點燃太空船的引擎以便更換到高軌道、再繼續進入繞日的行星際軌道,太空船被迫停留在環繞地球的低橢圓軌道上,近地點約在地表上空207公里,遠地點約349公里高。

-----廣告,請繼續往下閱讀-----

在環繞地球一圈之後,俄羅斯太空局Baikonur追蹤站(Baikonur Tracking Station)就接收不到太空船或搭載火箭所傳回的電波訊號,但一直沒有公布發射失敗的訊息。一位著名的衛星觀測者Ted Molczan於8:05報告說他觀測到這個太空船始終沒有如預期的改變軌道。由於這個任務設計的方式是按設定程式自動啟動點燃引擎的工作序列,無法繼續點燃,等於無法繼續下一步飛出地球系統的動作,這個任務失敗的消息才因而傳開。

An independent satellite tracker Thierry Legault took a clearest image to date of the Phobos-Grunt spacecraft (center) on the new year, Jan. 1, 2012. 隨後,各國太空中心加入追蹤行列,澳洲、亞洲、歐洲一些地面電波天文臺陸續接受到似乎來自Phobos-Grunt的電波訊號,有些地面觀測者甚至拍到它的影像,任務控制中心和俄羅斯軍方也終於能持續追蹤Phobos-Grunt太空船以及已脫離的火箭的軌道狀態。由於本季前往火星的「發射窗口」在11/20結束,錯過這個時機,太空船前往火星的難度將增加許多,以Phobos-Grunt太空船上的現有燃料與軌道而言,幾乎不可能達成任務了,因此任務中心終於決定放棄嘗試要太空船再度點火前往火星的念頭。

地球低軌上沒有動力的太空船,大氣摩擦力並不大,按理來說可在這個軌道上待個數十年沒問題;但Phobos-Grunt的軌道卻從11/14開始改變,改變原因不明,專家推測可能是飛行器的氣體不斷外洩的結果。這個現象在11/21停止,之後的軌道狀況便一如預測的緩緩降低。

在11/27~29期間,有個物體從Phobos-Grunt分離,被編號為G物體(Object-G),體積相當小,直徑約僅10公分,重量約0.3~0.5公斤。11/30又有另一個物體分離,編號為H物體(Object-H),專家對此物體的性質並不了解,但從軌道特性來看,應該與G物體類似。兩物體都從Phobos-Grunt漂離,之後軌道降得很快,兩者均已進入地球大氣,G物體在11/29、H物體在12/2落回地球。當時因這兩個碎片都很小,對地面威脅不大,因此並未對全球發出警報。

-----廣告,請繼續往下閱讀-----

火衛一(Phobos)

火星有2顆衛星,火衛一(Phobos)和火衛二(Deimos),其中火衛一比火衛二大一些。這兩顆衛星其實都不大,科學家推測可能是行經火星附近、被火星重力捕捉的小行星。

火衛一發現於1877年,直徑約22公里,和我們熟知的圓球形月亮不同,火衛一的形狀如同馬鈴薯般是不規則的。它的表面反照率非常低,只有0.071左右,也就是說照射到火衛一表面的陽光,只有7.1%會反射回太空中,使得火衛一表面看起來很暗,性質接近太陽系中的D型小行星。它距離火星中心點只有9,377公里,以火星平均半徑3,397公里來看,算是非常接近火星表面的衛星;事實上,它是太陽系中最接近行星的衛星呢!(比較:地球中心到月球的平均距離是384,400公里左右)而另一個特徵是它繞火星公轉的軌道是「逆行的」,也就是說與火星自轉方向相反,所以在火星表面觀看火衛一的話,將會看到「西升東落」的狀況。

資料來源:

  1. http://www.russianspaceweb.com/phobos_grunt_reentry.html
  2. http://www.spaceflight101.com/phobos-grunt-re-entry-information.html
  3. Russia’s lost Phobos-Grunt to fall in Afghanistan – U.S. military
  4. Hope lost for Fobos-Grunt – likely to re-entry early in New Year
  5. http://en.wikipedia.org/wiki/Phobos_(moon

轉載自台北天文館之網路天文館網站

-----廣告,請繼續往下閱讀-----
文章難易度
臺北天文館_96
482 篇文章 ・ 38 位粉絲
臺北市立天文科學教育館是國內最大的天文社教機構,我們以推廣天文教育為職志,做為天文知識和大眾間的橋梁,期盼和大家一起分享天文的樂趣!

0

7
1

文字

分享

0
7
1
致我們青澀的初戀——踏入晴道、也英的火星世界
Mia_96
・2022/12/26 ・1800字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

「也英,你還好嗎?但願你沒有感冒,今年的火星看起來特別亮,是本世紀火星距離地球最近的時候,當我看到明亮的星星時,就覺得你彷彿在我身旁。」晴道在少年時寫給也英的信中這麼說道。

接近人生半百,當晴道再次與也英相遇後,這麼恰好的,火星再次接近地球,劇中晴道與也英於札幌天文台享受著天文景象,究竟在望遠鏡中,他們看到的景象為何會產生?

晴道與也英的人生彷彿都與天文現象班暗示性的相像,也都與天文現象彼此相關。圖/IMDb

揭開接近地球的火星之時——火星衝

太陽系中的八大行星皆繞著恆星太陽公轉,但因各行星距離太陽的遠近不同,造成公轉軌道路徑長度差異,而行星的公轉軌道與速度進一步影響著其公轉週期。八大行星中每一顆行星的公轉週期皆不一樣,也因此,造成每天行星與恆星、行星與行星間的相對位置也都有所差異。

「衝」在天文現象中意指行星(地球軌道外)與太陽、地球,連成一直線的現象。當衝發生時,代表此顆行星整夜可見,且在天空中的亮度極亮!但正如同上文所述,因每顆行星之公轉週期有所差異,所以並非每一年都會發生衝。例如劇中晴道與也英所觀測的「火星衝」,週期約為 780 天,大約每經過 2 年 49 天便會發生一次。 

衝(opposition)為太陽、地球與外行星連線之位置,若太陽、內行星與地球連線時則會稱為合(conjunction)。圖/Wikipedia

長大後的晴道、也英所觀測的火星衝發生在 2018 年,亮度極亮的火星配上恰好的觀測時間,便是觀測火星的最佳時間點!

-----廣告,請繼續往下閱讀-----
火星公轉太陽一圈約需 687 個地球日,代表在火星上度過的一年接近於地球的兩年(代表如果在火星上等待下一次跨年的時間會更長!)圖/Pixabay

而在 2022 年 12 月初時,也發生了一次火星衝!這次火星的視星等亮度達到 -1.9 等,預測將會是未來十年內最亮的火星衝,但如果錯過這次也沒有關係,在 2033 年時會發生亮度更亮的火星衝,目前預估視星等亮度可以達到 -2.5 等呢!(星等值越小越亮!)

因火星公轉太陽軌道並非正圓形,故每一次的火星衝亮度也皆會稍有不同。圖/臺北市立天文科學教育館

滿載希望的希望號

除卻火星衝外,日本 1998 所發射的希望號探測器(のぞみ)也是年少的也英殷切期待的天文任務。當時日本為促使國民對於火星產生興趣與探索,舉辦於希望號中搭載姓名的活動,也英的名字也跟著希望號一起進行宇宙探索。

希望號原本的目標與任務是觀察火星上大氣層,與火星受太陽風作用的影響。但在 1998 年發射後,希望號的推進器出現故障,不只大量消耗燃料,還造成希望號進入火星軌道的時間延長,後又於 2002 年受到太陽劇烈活動的影響電力系統受到破壞。最終,希望號於 2003 年 12 月失聯,未能順利完成火星的探測任務。

希望號未能順利完成任務,彷彿暗示著也英的人生也同樣遇到瓶頸與挫折。圖/IMDb

未完待續的火星之旅

火星因其醒目的紅色外觀一直為人們所關注與追尋的星球(西方更將其取名為 Mars,即為羅馬神話中的戰神),且因火星具有與地球相似的環境條件,科學家一直將火星作為移居星球的選項之一,也設想過將火星「地球化」,使其更加適合人類居住。

-----廣告,請繼續往下閱讀-----

但人們是否有改變火星的權利,又或者我們對於火星是否有足夠的了解,或許等到未來更多次嘗試的火星任務後才能知曉答案,正像是晴道說的:「要想知道是不是命中註定,你必須全心投入進去。」

參考資料

0

1
2

文字

分享

0
1
2
當人們對細菌一無所知、當醫生不洗手:生產,就像是去鬼門關前走一趟──《厲害了,我的生物》
聚光文創_96
・2022/09/13 ・1767字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

無知的代價:產褥熱

故事說到這裡,此時此刻,人們依然只能透過顯微鏡、放大鏡等工具,追尋微生物的芳蹤。當然啦,發現微生物是一回事,要確認這些微生物與特定疾病的相關性,並且證實它們的致病性與致病機制,則完全又是另一回事。

在那個對微生物一無所知的年代,該有多可怕?圖/envatoelements

然而,產業救星巴斯德先生在拔了一根草、測了測風向以後,敏銳的發現,風向是會改變的。在與微生物和疾病的永恆戰鬥中,人類也不會永遠的屈居下風。

巴斯德的重心,逐漸從化學轉移到微生物之上。他雖然不是醫生,也不是婦女,卻對婦女的生死大關特別有興趣。

在十八世紀到十九世紀之間,有多達百分之三十的婦女,會在生產後的「產褥期」,受到細菌感染而持續發燒,稱為「產褥熱」(puerperal fever)。

-----廣告,請繼續往下閱讀-----

當時,產褥熱的致死率相當高,一旦受到感染,有百分之七十五的產婦可能會挺不過去,一手接生一手送死,悲傷的故事在醫院裡不斷上演。

被忽視的警告:「不要碰完屍體去接生!」

一八四三年,美國醫生霍姆斯(O. W. Holmes)在論文中提到,不少醫生會在解剖完屍體之後,再為產婦進行接生,這些產婦中,染上產褥熱的比例也偏高。

但是,當時的醫學界並不認同霍姆斯的觀點,將他的提醒當成了耳邊風。

進產房前,別忘了先寫遺囑!圖/聚光文創

與此同時,在著名的維也納大學醫學院中,匈牙利醫師塞麥爾維斯(Ignaz Philipp Semmelweis),正為了附屬醫院中,遲遲無法下降的產婦死亡率而苦惱著。

-----廣告,請繼續往下閱讀-----

即使進行了詳細的大體解剖,塞麥爾維斯也無法找出產褥熱的原因,只能眼睜睜的看著產婦一邊期待著新生命的降臨,一害怕著死神將揮舞著鐮刀,收割她們的性命。

心痛的塞麥爾維斯,於是將目光轉向產房細節。他注意到,如果產婦居住在解剖室旁的產房,產褥熱的比例更居高不下;反觀助產士教學病房裡的產婦,死亡率就明顯較低。

塞麥爾維斯於是推測,或許在屍體中帶有某種毒素,經由負責解剖的醫生、實習生的雙手,在接生或產檢之際進入產房,造成了產婦的死亡。

只是洗個手,死亡率剩下原本的 1/4

一八四七年,塞麥爾維斯決定,要求產科裡所有醫生、實習生,特別是那些剛進行過大體解剖的小夥伴們,在為產婦接生或檢查之前,務必要用肥皂與漂白水浸泡、清洗雙手,並澈底刷洗指甲底下的汙垢。

-----廣告,請繼續往下閱讀-----

果不其然,一個簡簡單單的洗手動作,就讓院內產婦的死亡率,從百分之十二下降到百分之三!可喜可賀!

即使塞麥爾維斯發現「洗手」就可以降低產婦的死亡率,但它的發現並未被醫界重視。圖/envatoelements

按照常理思考,我們可以大膽推測,接下來的劇情發展應該是:「塞麥爾維斯被譽為英雄,他所推行的洗手習慣,立刻被全世界廣泛採用……」

NO~NO~NO,塞麥爾維斯拿到的,可不是這麼簡潔、老生常談的劇本,故事尚未劇終,本章節依然未完待續。

事實上,他的重要發現並沒有受到醫學界的認可,連病房主任也說,死亡率的下降,是醫護同仁們用心禱告的結果,跟洗不洗手什麼沒啥關係。

-----廣告,請繼續往下閱讀-----

不僅論點違背主流風向,許多醫生甚至覺得,塞麥爾維斯的說法,根本就是在說「醫生手很髒」或「病從醫生來」,對此,他們表達強烈的不憤怒與不滿。

讀到這裡,我們或許會覺得,只是洗個手,有那麼痛苦那麼難嗎?殊不知,即便是疫情當前的今日,對於這個倡導手部衛生的建議,依然有人會感到不滿與抗拒。

如此一想,一百多年前的醫生們不想洗手,好像不是多麼不可思議的事情了。

沒想到竟然連醫生都會不想洗手!圖/聚光文創

──本文摘自《厲害了,我的生物》,2022 年 8 月,聚光文創,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
聚光文創_96
6 篇文章 ・ 6 位粉絲
據說三人出版社就算得上中型規模,也許是島嶼南方太過溫暖,我們對出版業的寒冬始終抱持著浪漫與天真。 作者們說,出版市場很艱困,但我們依然想在翻譯領軍的文學市場中,為本土的作者、原創故事發聲。 喜歡做為升學孩子減輕壓力的書,不要厚重百科類型、沒有艱澀的專有名詞,很多重大發現的背後故事更值得我們好好品味。

1

1
1

文字

分享

1
1
1
葡萄酒變酸了?這可不能忍!巴斯德揪出「乳酸菌」,成功拯救法國的釀酒業──《厲害了,我的生物》
聚光文創_96
・2022/09/12 ・2154字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

國安危機!為什麼葡萄酒變酸了?

在上一集中,我們聊到了十七世紀,荷蘭科學家 aka 手作達人雷文霍克,以他那充滿手工溫度的兩百五十臺顯微鏡,以及一百七十二塊鏡片,為世人展示了「微型動物」(微生物)的世界。

然而在雷文霍克之後,除了斯巴蘭札尼神父曾經投以關愛的眼神,做了一些相關的實驗與研究,微生物似乎逐漸被眾人遺忘。

一直到微生物學的奠基者,巴斯德(Louis Pasteur)的出現,微生物的存在終於開始閃閃發光。一開始,巴斯德是打算進行「自然發生說」的相關實驗,沒想到,一個可能動搖國本的問題卻找上了他。

巴斯德(Louis Pasteur)被譽為微生物學的奠基者,也是研發出狂犬病疫苗的科學家。圖/Wikipedia

在浪漫優雅的法國,飲酒文化與釀酒事業同樣歷史悠久,然而,當時的酒商與釀酒廠負責人卻天天急得跳腳,一點也浪漫不起來。

-----廣告,請繼續往下閱讀-----

原來,釀酒這門手藝太過精細,只要一不小心,酒廠生產的酒很可能就會酸化變質,不僅造成商譽與營運的巨大損失,也會影響市場供應的穩定性。

生活不能缺少微醺的感覺,釀酒業的危機,簡直就是國安危機,巴斯德義無反顧的決定伸出援手。

於是,巴斯德拿出科學家的精神,仔細研究了整個釀酒過程,收集、觀察製程中,不同時間的發酵液,並且分析、比較這些酒液的不同。

經過一次一次的培養與試驗,巴斯德終於發現,在顯微鏡下,正常的發酵液中,有一種形狀圓圓的球體小生物(也就是酵母菌);而那些發酵失敗、變酸的酒液中,則可以看見一種又細又長的桿狀小生物(乳酸菌是也)。

-----廣告,請繼續往下閱讀-----
乳酸菌平常也許是不錯的東西,但要是跑到酒裡面可就不好了。圖/envatoelements

抓出讓酒精變質的小小兇手

一八五七年八月,巴斯德發表了他的研究成果,這篇論文,可以說是現代微生物學的開山之作。論文中指出,發酵,是涉及某些特定的細菌、黴菌、酵母菌等微生物的活動。

這些研究不僅拯救了釀酒業,也影響著食品業與醫藥產業。當時的科學界一度認為,發酵與食物腐敗、傷口發炎等現象,是可以畫上等號的,因此啟發了一名外科醫師的抗菌革命之路(這段故事我們後面再聊,先賣個關子)。

回到釀酒業的危機處理之上,雖然揪出了讓酒變酸的凶手,但巴斯德的工作還沒有完成,還得找出一勞永逸的方法,才算是功德圓滿。

經過一番苦思冥想,巴斯德最後採用的是加熱滅菌法,這種方法,如今也被稱為「巴斯德消毒法」(pasteurization)。

-----廣告,請繼續往下閱讀-----

我們都知道,加熱是個有效的滅菌方式,巴斯德將釀好的酒,短暫、而且小心翼翼的加熱,直到攝氏五十至六十度,藉此殺死那些可能讓酒變質的細菌。如此一來,不僅能讓酒長斯保存,也不會犧牲酒的口感,是不是很讚!

感謝巴斯德讓我們今天能喝到沒有壞掉的酒。圖/聚光文創

陷入絕境的養蠶業:蠶寶寶為什麼會生病?

感謝飛天小女警,啊不,是巴斯德的努力,一天又平安的過去了,釀酒業終於恢復了平靜。然而,一八六五年,法國農村再次遭遇危機。

雍容華貴的絲綢,是廣受貴族喜愛的高級布料,養蠶、攪絲、織布,也是當時法國農村的一大主力產業。沒想到,一種傳播快速、並且容易致死的疾病,卻在蠶寶寶界蔓延開來,蠶農們對此束手無策,養蠶業因此陷入絕境。

在昔日師長的建議之下,巴斯德決定投身於蠶病研究,為蠶寶寶尋得一線生機。

-----廣告,請繼續往下閱讀-----

在此之前,他並沒有養過蠶,也缺乏相關知識。於是他動身前往法國南部,花了五年的時間,在第一線的蠶病疫區進行研究。

透過顯微鏡,巴斯德在病蠶的身體裡,發現了一些微小的病原體。

不曉得大家小時候有沒有養過蠶寶寶呢?圖/envatoelements

同樣的,溯源之後還得找出根治方法,巴斯德除了研究鑑定方法,以幫助蠶農辨認染病的蠶寶寶之外,也建議蠶農對病蠶進行隔離。

篩檢與隔離,加上選擇性育種與提高蠶群的清潔度,巴斯德提出的「蠶界防疫新生活」,不但拯救了無數蠶寶寶的性命,也讓瀕臨崩潰的法國絲綢獲得喘息。

-----廣告,請繼續往下閱讀-----

在釀酒業與養蠶業分別取得成功之後,巴斯德於是將目光從經濟產業轉向醫療產業。

這些肉眼看不見的微生物,既然可能讓酒變酸,也可能讓蠶生病,是不是也可能引發人類的疾病?如果真是如此,只要知道如何躲避生物的攻擊,或許就能增加戰勝疾病的可能性。

大家努力待在家防疫的時候也別忘了記得動一動。圖/聚光文創

──本文摘自《厲害了,我的生物》,2022 年 9 月,聚光文創,未經同意請勿轉載。

所有討論 1
聚光文創_96
6 篇文章 ・ 6 位粉絲
據說三人出版社就算得上中型規模,也許是島嶼南方太過溫暖,我們對出版業的寒冬始終抱持著浪漫與天真。 作者們說,出版市場很艱困,但我們依然想在翻譯領軍的文學市場中,為本土的作者、原創故事發聲。 喜歡做為升學孩子減輕壓力的書,不要厚重百科類型、沒有艱澀的專有名詞,很多重大發現的背後故事更值得我們好好品味。