0

0
0

文字

分享

0
0
0

使用奈米科技新技術,快速篩檢敗血症病菌

活躍星系核_96
・2011/12/20 ・1713字 ・閱讀時間約 3 分鐘 ・SR值 584 ・九年級

-----廣告,請繼續往下閱讀-----

本篇文章由台灣大學提供,PanSci歡迎台灣各科研單位提供您的最新訊息。

病菌檢測是許多重大疾病醫療的基礎,但是,檢測時間往往曠日費時,例如,讓病患飽受死亡威脅的急症之一的敗血症,病菌檢測時間往往需要2至5天。由中研院特聘研究員和臺大物理系合聘教授王玉麟所帶領的跨校研究團隊最近發表一項醫療檢測技術上的重大突破,他們利用奈米科技光譜技術可望將敗血症的檢測時間大幅縮減至三十分鐘(增快約百倍),可以有效提升疾病治癒率、避免藥物濫用、以及減少併發症等。

這個獨步全球的重大成果,已在知名國際期刊「自然通訊」《Nature Communications》於2011年11月15日刊登,它是利用「捕捉與偵測細菌雙功能快速檢驗晶片」來檢驗血液中細菌的新科技。它可以直接從血液捕捉細菌,加以濃縮並就地偵測細菌的光譜訊號,藉此辨別其種類,即得以幫助醫師快速決定如何有效使用抗生素,甚至可分辨此細菌是否具有抗藥性,可望克服抗藥性細菌的難題。此項堪稱醫病福音的重大發明也同時獲國際奈米科技網站媒體《Nanowerk》的報導。

此一研究論文的第一發表人,臺大高分子所助理教授劉定宇表示,這項發明是利用表面增強拉曼光譜技術(Surface-Enhanced Raman Spectroscopy,SERS)為基礎,製作「捕捉與偵測細菌雙功能快速檢驗晶片」,具有超高的靈敏度,在幾秒鐘之內就可以取得單隻細菌的光譜,因此,可望在短短三十分鐘內篩檢出敗血症病人血液中的細菌(正常細菌檢測程序則需時2-5天),因此,可以有效幫助醫師快速而有效的使用抗生素,減少濫用抗生素的情形。

-----廣告,請繼續往下閱讀-----

劉定宇進一步說明,這是一種奈米科技新技術,「捕捉與偵測細菌雙功能快速檢驗晶片」可以利用它表面上第一層的「萬古黴素」將血液中的細菌牢牢地抓住,以便第二層的「銀奈米粒子陣列」來放大細菌表面分子的拉曼光譜訊號。就像每一種樂器都有自己特定的音色一樣,每一種分子也都有自己特定的 「分子拉曼光譜指紋」,因此科學家可以藉此光譜指紋來區分細菌的種類。

以敗血症為例,台大醫院創傷醫學部韓吟宜主治醫師表示,此一快速檢驗晶片檢測可望帶來的重大效益為:
(1) 檢驗方法大躍進:可在數十分鐘內得到初步檢驗結果,較傳統細菌培養方法,檢測速度增快很多(並可判別此細菌是否具有抗藥性),而檢測準確率也可望提升(敗血症病人的血液培養只有30%呈陽性結果;敗血症休克病人50至60%會有陽性培養結果);
(2) 降低敗血症病患的併發症與死亡率:在第一時間依檢驗結果指導敗血症抗生素的選擇,不再憑經驗選擇用藥(empirical use),可大幅提升敗血症患者的存活率,降低器官衰竭的發生;
(3) 抗生素管制:避免了抗生素濫用、抗藥性細菌的發展;
(4) 減少醫療支出:因為提升了疾病治癒率、避免藥物濫用、減少併發症等。

此外,此快速檢測平台檢測技術的潛在效益亦十分可觀,它不僅能針對血液臨床檢體來使用,也可將此奈米檢測技術推廣至環境污染(水質檢測)、食品藥品微生物(大腸桿菌、塑化劑等)檢測,甚至病毒、癌症篩檢等多方面來使用。實為病菌檢測技術和促進健康環境和醫療效益的世紀性貢獻。

這項發明是中研院原分所王玉麟特聘研究員(台大物理系合聘教授)所帶領的跨領域團隊經過多年努力的研究成果之一。本篇論文的第一作者為台灣大學高分子所專案計畫助理教授劉定宇,其他作者包括台灣大學凝態中心王俊凱研究員、陽明大學微免所林奇宏教授、台灣大學光電所博士班學生蔡焜棟及中研院原分所王懷賢(SERS晶片發明人之一)、陳玉、陳友暄、趙元駿、張軒豪等人,通訊作者為王玉麟。

-----廣告,請繼續往下閱讀-----

本研究由行政院國科會奈米國家型科技計畫、閎康科技股份有限公司、中央研究院深耕計畫與教育部五年五佰億學術邁頂計畫共同支持完成。

「捕捉與偵測細菌雙功能快速檢驗晶片」示意圖 此晶片的核心技術是在銀粒子奈米陣列(銀色)上覆蓋一層萬古黴素(綠色),利用它來捕捉血液中的細菌(白色),而將血液中的血球(紅色)排除在外。被捕捉的細菌可以藉由表面增強拉曼光譜(SERS)快速地被偵測到。此研究結果發表於近期的Nature Communications中。

論文連結:Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood

文章難易度
活躍星系核_96
752 篇文章 ・ 122 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

1

1
1

文字

分享

1
1
1
超壓縮的水會變成冰?!二維奈米薄冰能在室溫下穩定存在嗎?有什麼用途?——專訪中研院原分所謝雅萍副研究員
研之有物│中央研究院_96
・2024/03/10 ・4907字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|張琬婷
  • 責任編輯|簡克志
  • 美術編輯|蔡宛潔

水能被擠壓成冰?

水在攝氏零度以下會結冰。然而,當水被擠壓到極限時,會形成二維的奈米薄冰,不僅室溫下穩定存在,還有從未見過的鐵電特性(Ferroelectricity),而石墨烯則是實現這種擠壓條件的關鍵。中央研究院「研之有物」專訪院內原子與分子科學研究所的謝雅萍副研究員,她與我們分享了實驗室如何意外發現這層特殊的二維薄冰,以及團隊如何利用二維薄冰的鐵電特性製作有記憶電阻功能的奈米元件,研究成果發表在科學期刊《自然通訊》(Nature Communications)。

奈米尺度下,物質特性會跟著改變?

謝雅萍的主要研究題目之一就是合成新穎的二維材料,這是奈米科技的領域。奈米是什麼?奈米(nanometer)是長度單位,即 10-9 公尺,一根頭髮的直徑長度約為 1 奈米的十萬倍。奈米尺度之下,很多物質的特性會隨之改變,最常見的例子是「蓮花效應」,因為蓮花葉上具有奈米等級的表面結構,為蓮葉賦予了疏水與自我清潔的特性,髒污與水珠都不易附著在蓮葉上。

電腦模擬圖(左)和實際照片(右),蓮葉上密集的微小突起,讓大顆的水珠和灰塵不易附著,這讓蓮葉具有疏水與自我清潔的特性。
圖|William ThielickeGJ Bulte

奈米材料(nanomaterial)是指三維尺寸的材料,至少有一個維度的尺寸小於 100 奈米。只縮小一維,就是平面的二維材料(2D),例如石墨烯;縮小兩個維度,就是奈米線(1D);三維都縮小,就是零維的奈米顆粒(0D)。

奈米科技(nanotechnology)的概念最早可追溯到 1959 年美國物理學家理查費曼(Richard Feynman)在演講中提出的願景「為什麼我們不能把大英百科全書全部寫在一根針頭上呢?」。1974 年日本科學家谷口紀男則是首度創造「奈米科技」這個詞的人,他認為奈米科技包括原子與分子層次的分離、固定與變形。

-----廣告,請繼續往下閱讀-----

過去有不少科學家嘗試奈米材料的研發,但受限於製造技術不成熟,而無法順利製作出精細製程的奈米材料。1981 年,在掃描隧道顯微鏡(Scanning Tunneling Microscope, STM)發明之後,不僅有助於材料的微觀分析,操縱單個原子和分子也成為可能,奈米科技也逐漸實現。

2013 年 IBM 研究人員使用 STM 顯微鏡將上千個一氧化碳分子製作成原子等級的動畫「男孩與他的原子」,目前是金氏世界紀錄最小的定格影片。

無處不在的奈米科技?

我們生活周遭的奈米科技俯拾即是,從大賣場商品到半導體產業的電子元件都有。謝雅萍舉例:防曬霜之所以是白色,是因為裡面有二氧化鈦的奈米顆粒;許多塗料與噴漆亦會以奈米添加物,來增進耐蝕、耐磨、抗菌與除汙的特性,例如汽車鍍膜或奈米光觸媒;羽球拍或牙醫補牙會使用奈米樹脂,讓球拍和補牙結構更堅固。

至於半導體產業,奈米科技更是關鍵。透過縮小元件尺寸以及調整奈米元件的幾何形狀,以便於在單一晶片上乘載更多電晶體。「當今的電晶體大小皆是奈米等級,製作電子元件就等同在處理奈米科技的問題」,謝雅萍說道。

IBM 展示 5 奈米技術的矽奈米片電晶體(nanosheet transistors),圖中堆疊起來的一顆顆橢圓形結構是電子通道的截面,IBM 設計立體結構以因應愈來愈小的元件尺寸。
圖|IBM

實驗中的難題,反而促成驚奇發現?

鐵電性是什麼?二維奈米薄冰有哪些可能的應用方式?

對謝雅萍來說,發現二維的奈米薄冰是個意外的驚喜。最初謝雅萍團隊其實是要製作以石墨烯為電極的開關,畢竟石墨烯是實驗室的主要研究項目,理論上當兩層石墨烯很靠近時,分別給予兩端電壓會是導通的「ON」狀態,沒電時就是斷開的「OFF」狀態。

-----廣告,請繼續往下閱讀-----

然而,實驗過程中團隊卻發現當電壓為零時,石墨烯開關仍會導通,甚至要給予負電壓時才會成為 OFF 狀態。這個奇特的現象讓研究團隊苦惱許久,嘗試思考了各種可能性,但都無法完善的說明此現象。

「原本以為實現石墨烯開關應該是一件能夠很快完成的題目,沒想到過程中卻出現了這個意料之外的難題,因此這個研究比預期多花了一兩年」,謝雅萍無奈地笑道。

靈感總是突如其來,某次謝雅萍在與朋友討論研究時,突然想到一個可能的方向:「一直以來都有人猜測水是否為鐵電材料,但都沒有真正證實。臺灣氣候潮濕,開關關不緊會不會就是水的影響?」

設計實驗跑下去之後,謝雅萍團隊終於擺脫了一直以來的疑雲。原來,兩層石墨烯結構中,真的有水分子的存在!「一般水分子用手去捏,還是會維持液體的狀態。但是我們發現,當水被兩層石墨烯擠壓到剩下原子厚度時,水分子就會變成具有鐵電特性的二維薄冰!」,謝雅萍開心地說道。

-----廣告,請繼續往下閱讀-----

換句話說,當極限擠壓之下,水會結成冰,而這層超薄的平面奈米薄冰會轉變成鐵電材料,而且可以在室溫下穩定存在!

示意圖,當水受到兩層石墨烯的極限擠壓之下,會形成單原子厚度的二維奈米薄冰,這層薄冰是鐵電材料,而且可以在室溫下穩定存在。
圖|之有物(資料來源|謝雅萍)

鐵電材料乍聽之下很抽象,謝雅萍表示:「相較於會吸磁鐵的鐵磁材料,大多數人對鐵電材料比較不熟悉,其實概念十分相似」。她說,鐵磁材料經過外加磁場的「磁化」之後,即使不加磁場仍可維持原本的磁性。相對地,鐵電材料經過外加電場的「極化」之後,即使不加電場仍可維持原本的電荷極化方向。

謝雅萍團隊發現的二維冰具有鐵電性,這意味著水分子的正負極在外加電場之下會整齊排列,形成一個永久的電偶極,並且在電場消失後保持不變。

鐵電材料經過外加電場的「極化」之後,即使不加電場仍可維持原本的電荷排列方向。圖片顯示為順電狀態,極化方向和外加電場相同,箭頭表示每一小塊區域(Domain)的平均極化方向。
圖|之有物(資料來源|Inorganics

接著,謝雅萍發現,二維冰的鐵電性只存在於單層原子,增加多層原子之後,鐵電性會消失,變成普通的冰,這是因為多層原子的交互作用會打亂原本的極化排列。因此研究團隊發現的二維冰,是非常特殊的固態水,不是手搖飲加的冰塊那麼簡單。

因為石墨烯的擠壓和固定,二維冰可以在室溫下穩定存在,不會蒸發。謝雅萍團隊實驗發現,要升溫到攝氏 80 度,被夾住的二維冰才會變成水。如此大範圍的操作溫度,這讓謝雅萍開始思考將二維冰作為鐵電材料使用的可能性。

-----廣告,請繼續往下閱讀-----

於是,謝雅萍團隊嘗試開發新型的電子元件,他們將二維冰與石墨烯整合成機械式的奈米開關。由於二維冰具有鐵電特性,在施加不同外加電壓之後,元件可以維持上次操作的電阻值,並保留至下次操作,有這種特性的元件稱為「憶阻器」(memristor)。

憶阻器這個詞是由記憶體(memory)與電阻(resistor)組合而成,字面上的解釋便是:具備記憶先前電阻值的能力。

謝雅萍表示:「我們可以藉由不同的外加大電壓寫入電阻值,再以微小電壓讀取之前的電阻值,允許快速存取」。而單獨一個二維冰奈米開關可以記住 4 個位元的資料,具備未來記憶體的發展潛能。

此外,二維冰奈米開關也是很好的開關裝置,團隊驗證導通電流和截止電流的比值可以達到 100 萬,開路和斷路的功能極佳,並且允許雙向操作。而開關的功能經過 1 萬次循環還不會衰減,相當穩定。

謝雅萍團隊是全世界第一個證實二維薄冰鐵電性的團隊,並實現第一個以石墨烯為架構的二維冰機械式憶阻器。她的團隊將往新穎二維材料的方向繼續邁進,目前實驗室有和台積電(TSMC)合作,希望透過產學合作,將更多奈米技術的應用落地實現。

-----廣告,請繼續往下閱讀-----
謝雅萍與研究團隊用意外發現的二維奈米薄冰,以石墨烯為架構,做出了全世界第一個機械式的憶阻器。
圖|之有物

與二維材料實驗的相遇?

謝雅萍目前除了是中研院原分所的副研究員,同時也是國立臺灣大學 MY Lab 實驗室的共同主持人,她和人生伴侶 Mario Hofmann 教授共同指導的 MY Lab 發揮了 1+1>2 的效果,創意與想法的激盪和交流,是產生傑出研究的關鍵。

回到碩博士時期,謝雅萍都在臺大物理所,鑽研材料的光電性質與新穎光電元件的機制。她回憶:「當時我們都要向化學系要材料,他們給什麼我們就得用什麼,但難以了解整個材料製造的細節。」後來她體認到,擁有製造材料的調控能力才能真正突破元件設計上的侷限。

謝雅萍在博士班時申請到了千里馬計畫,讓臺灣博士生獲得國科會補助前往國外頂尖研究機構,進行為期約半年至一年的研究。「我認為這個計畫非常好,也可以幫助學生建立重要人脈!」在指導教授引薦下,謝雅萍因緣際會進入美國麻省理工學院(MIT)的二維材料實驗室,自此與二維材料結下不解之緣,她認為:「好材料與好元件是相輔相成的,前瞻材料更是如此。」

「我到了 MIT 之後,深刻體悟到他們做研究的態度與臺灣學生的不同。臺灣學生像是把研究當作一份工作,然而我在 MIT 時就感受到他們學生對於自身研究的熱忱。討論風氣也非常盛行,學生之間會互相分享自己的研究內容,互相幫忙思考、激盪出新想法」,謝雅萍分享自己在 MIT 時期的觀察。

-----廣告,請繼續往下閱讀-----

當年二維材料還在萌芽階段,她所在的 MIT 實驗室已是此領域的佼佼者,她也因此立下了目標:「希望未來我有能力時,能夠自己掌控自己的材料做出好元件!」如今,謝雅萍正走在自己目標的道路上,過去認識的朋友也都是各頂尖大學的二維材料實驗室主持人,直到現在都還會互相幫忙。

從物理到二維材料,身處這些男性為主的學術環境,謝雅萍顯得自在,而且積極參與討論和交流。「我發現女科學人會把自己變得較中性,讓自己融入整個以男性居多的環境中,才不會在團體中有突兀的感覺」,她分享道。

謝雅萍的實驗室 MY Lab,是與臺大物理系 Mario Hofmann 教授共同主持的奈米科技實驗室,他們除了是工作上的夥伴,更是人生中的最佳拍檔!當初兩人就是在美國麻省理工大學 MIT 相識,再一起回到臺灣。

讓「研之有物」團隊好奇的是:這種共同主持的模式與一般實驗室相比,是否有特別之處?

-----廣告,請繼續往下閱讀-----

「從多個面向而論,我認為都是 1+1>2 的」,謝雅萍說道,「實驗室會有兩倍的資源、儀器、計畫與兩倍的人脈。遇到一個題目,兩個人思考時會從不同的觀點切入。即便是夫妻,我們在研究上看的面向也都不一樣,因此可以激盪出許多有趣的想法」。

她補充,不僅對實驗室本身而言,對學生也有很大的好處,「因為學生的研究必須同時說服我們兩個人,代表學生的研究成果會非常扎實,也可以為學生帶來信心。」重要的是,「學生也會得到兩倍的照顧與關愛,我覺得我們的學生是蠻幸福的」,謝雅萍笑笑地說。

所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3404 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
免費 DIY 子宮頸篩檢──澳洲獨步全球的醫療政策
胡中行_96
・2022/07/11 ・2865字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

床第運動,抗體要有。「 PTT 鄉民女神」四叉貓(劉宇)日前在臉書上,分享施打「 HPV 疫苗」的心得,引發網友議論該疫苗對不同生理性別的作用。[1] 人類乳突病毒(human papillomavirus,簡稱 HPV )疫苗可以預防男女的生殖器疣(俗稱「菜花」;genital warts),以及女性的子宮頸癌與男性的陰莖癌等 HPV 相關癌症。[2, 3] 然而施打疫苗,並非神功護體一勞永逸,所以奉勸以生理女性為大宗,「凡是有子宮頸的人類」[註],都要接受定期檢查。[4, 7]

  

「防禦就在您手中。」──澳洲國家子宮頸篩檢宣傳。圖/資料來源 12
(© Commonwealth of Australia. Image used as ‘fair dealing‘ under the Copyright Act 1968.)

臺灣的衛生福利部鼓勵 30 歲以上婦女,每 3 年進行一次免費的子宮頸抹片(Pap smear)。[5] 澳洲以前也提供 18 到 70 歲的女性,每 2 年一次相同的服務;但 2017 年起改為 25 至 74 歲,每 5 年做一次子宮頸篩檢(cervical screening test)。[6, 7, 8] 有別於前者偵測子宮頸的異常細胞;後者是一種 PCR 檢測,[9, 10] 能驗出有無 HPV 感染,因此可以更早發現罹癌風險。[11] 最近澳大利亞聯邦政府又有新政策,宣佈:「從 2022 年 7 月 1 日起,『國家子宮頸篩檢計劃』允許所有符合資格的婦女,自行採集檢測樣本。[12]

這意味著澳洲成為全世界第一個,開放 DIY 子宮頸篩檢的國家。[7, 10, 13]

  

-----廣告,請繼續往下閱讀-----
澳洲DIY子宮頸篩檢宣傳影片,此為原住民版,配有傳統圖騰。來源:Australian Government, Department of Health and Aged Care on YouTube

  

DIY 子宮頸篩檢

依照澳洲政府的規定,如欲自行採集子宮頸篩檢樣本,要先向醫療單位預約門診。聽完專業的操作解說後,於現場完成採樣,並繳回檢體。目前不開放民眾在家土法煉鋼。[13]

  

小心翼翼地把拭子拔出塑膠管,準備放進陰道採樣。圖/NSW Health, Australia
(© State of New South Wales NSW Ministry of Health. Image used under the Creative Commons Attribution 4.0.)

  

-----廣告,請繼續往下閱讀-----

DIY 子宮頸篩檢的基本步驟如下:

醫療院所會安排就診婦女在私密的空間,例如:布簾後或廁所裡,進行採樣。如果有疑問,要在領取檢測器材時,請教醫療人員。不然等會兒被拋下,便只能自食其力了。[14]

圖/資料來源 14 (© Commonwealth of Australia. Images used as ‘fair dealing‘ under the Copyright Act 1968.)

趁著四下無人,調整個舒適的姿勢,並拉下內褲。[14] 用潔淨且乾燥的雙手,取出器材包裡,裝著 PCR 拭子[9, 10] 的塑膠管。[14] 拔出管中拭子時,切勿隨意觸碰(上圖) B 端,以確保其不受汙染。[14]

圖/資料來源 14

用手把陰部的肉撥開,輕柔地將拭子伸進陰道。有些版本比較貼心,長柄上面有記號,表示插入的正確深度。接著,旋轉拭子 10 到 30 秒,各個方位都要顧及。這頂多造成輕微的不舒服,但不至於疼痛。[14]

圖/資料來源 14

從陰道將拭子拉出來後,收回塑膠管中關緊,裝進原本包裝的袋子裡。穿好衣服,把檢體整袋交予醫療人員,回家等待檢驗報告。如果樣本中偵測到 HPV 病毒,就會被通知回診,做進一步的檢查。[14]

圖/資料來源 14

  

DIY 篩檢的優點

傳統的子宮頸癌檢查,不管是抹片還是 PCR ,都要將私處暴露在醫療人員面前,還得讓俗稱「鴨嘴」的擴陰器(speculum)撐開陰道。[10, 15] 這對更年期下體不適、曾被性侵,或是具有特定文化、宗教背景的婦女,以及擁有子宮頸的變性男子而言,都無疑是天大的身心阻礙。[10] 正因如此,諸多研究顯示,自己採集樣本的選項,會大幅提升民眾的篩檢意願。此外,其檢測的準確率,與交由專業人員採樣相當。[10, 16, 17]

  

傳統的子宮頸癌檢查, 會用俗稱「鴨嘴」的擴陰器,撐開陰道。圖/National Cancer Institute, USA

  

-----廣告,請繼續往下閱讀-----

若是新的政策推廣順利,原本拒絕接受檢查的人都改變心意,那麼澳大利亞或許就有機會在 2035 年以前,成為世界上第一個徹底剷除子宮頸癌的國家。[10]

  

備註

在澳洲政府的某些官方宣傳資料裡,將子宮頸篩檢的對象,設定為「年紀介於 25 到 74 歲之間,性行為活躍或曾有過性關係,女性或有子宮頸的人」,[4] 或是「 25 到 47 歲間,任何有子宮頸的人」。[7] 之所以用「有子宮頸的人」這種說法,大概是為了涵蓋變性或雙性等可能性。(原文:「You are eligible for a subsidised Cervical Screening Test if you are: aged between 25 and 74; sexually active or ever have been; a woman or person with a cervix」[4] 以及「anyone aged 25-74 with a cervix」。[7]

參考資料

  1. 劉宇(四叉貓)(Facebook,2022)
  2. The HPV vaccine (HPV Vaccine, accessed in 2022)
  3. HPV專欄QA(衛生福利部國民健康署,2022)
  4. Should you have a Cervical Screening Test? (Australian Government – Department of Health and Aged Care, 2022)
  5. 子宮頸癌防治(衛生福利部國民健康署,2022)
  6. National Cervical Screening Program (Australian Government: Ministers – Department of Health and Aged Care, 2022)
  7. ‘Pap smears’ can be replaced by do-it-yourself cervical cancer tests (Australian Government: Ministers – Department of Health and Aged Care, 2022)
  8. Cervical screening test (Health Direct, 2020)
  9. Changes to the National Cervical Cancer Program (NSW Health – Pathology, 2015)
  10. Australia to offer self-testing swabs to all women for cervical cancer screening (Sydney Morning Herald, 2022)
  11. Understanding your Pap smear or cervical screening test results (Cancer Council Australia, accessed in 2022)
  12. Self-collection now available for cervical screening (Australian Government – Department of Health and Aged Care, 2022)
  13. Australia now offers ‘game-changing’ self-test for cervical cancer. How does it work and why is screening important for women? (ABC News, 2022)
  14. National Cervical Screening Program – How to collect your own vaginal sample for a Cervical Screening Test (Australian Government – Department of Health and Aged Care, 2022)
  15. 子宮頸癌篩檢介紹(衛生福利部國民健康署,2016)
  16. Hawkes D, Keung MHT, Huang Y, McDermott TL, Romano J, Saville M, Brotherton JML. (2020) ‘Self-Collection for Cervical Screening Programs: From Research to Reality’. Cancers (Basel), 12, 4: 1053.
  17. Self-collected vaginal samples (Cancer Council Australia, 2022)
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

10
3

文字

分享

0
10
3
什麼是「近場光學顯微術」?為何它是開啟奈米世界大門的關鍵?
科技大觀園_96
・2021/12/01 ・2708字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

近場光學顯微術可突破繞射極限,使我們看到奈米等級的光學影像。圖/孔瀞慧繪

傳統光學顯微技術發展幾個世紀之後,從 20 世紀後半⾄今,突破光學繞射極限成為顯微技術的重要課題。繞射極限是光波所能聚焦的最⼩尺寸(約為光波長的⼀半,以可⾒光來說約 200-350 nm),仍遠⼤於分⼦和奈米材料。顯微鏡的發明是進入微觀世界的⾥程碑,⽽突破光學繞射極限後就能開啟進入奈米世界的可能性。 

突破光學繞射極限的超⾼解析度顯微技術⼤致上可以分為遠場(far field)與近場(near field)兩⼤類,這兩者的差別在於是否利⽤探針在靠近樣品距離遠⼩於⼀個波長(約數⼗奈米)處進⾏量測,若有則為近場,其餘則屬於遠場。⽽遠場顯微技術若要達到奈米級別的超⾼解析度, 需要以特殊螢光標定加上大量電腦計算來輔助。 

中央研究院應⽤科學研究中⼼研究員陳祺,專攻近場光學顯微術,屬於探針掃描顯微術(Scanning probe microscopy, SPM)中與光學相結合的分⽀。 

探針掃描顯微術,家族成員眾多 

探針掃描顯微術泛指使⽤探針來掃描樣品的顯微技術,依照原理的差別再細分成多個類別。在整個探針掃描顯微術家族中,最早的成員為 1981 年問世的掃描穿隧顯微鏡(Scanning tunneling microscope, STM),其主要機制是偵測探針與待測物表⾯間的量⼦穿隧電流(註1),作為回饋訊號來控制針尖與待測物的距離,⽽得到待測物表⾯次原⼦級別的高低起伏。1986 年發明的原⼦⼒顯微鏡(Atomic force microscope, AFM)則是⽬前最廣為應⽤的探針顯微技術,其以針尖接觸(contact)或輕敲(tapping)物體,藉由偵測針尖和物體表⾯間之凡得瓦⼒,得知物體表⾯的高低起伏。 

-----廣告,請繼續往下閱讀-----
探針掃描顯微術(SPM)家族。僅示意,並未包含所有的成員。圖/劉馨香製圖,資料來源:陳祺

在探針掃描顯微術中,控制針尖與物體的相對距離是重要的課題,STM 可控制距離在一奈米以下,AFM 則可在一奈米到數十奈米間變化。此外,要在奈米世界「移動」並不是⼀件簡單的事。因為⼀般以機械⽅式的「移動」,其尺度都會在微米級別以上,這就像是我們沒有辦法要求⼤象邁出螞蟻的⼀⼩步⼀樣。所幸 1880 年居禮兄弟發現壓電材料會因為外加電場,⽽導致晶格長度的伸長或者收縮,即可造成奈米級別的「移動」。⽬前所有的探針顯微術都是以壓電效應達成對針尖或樣品「移動」的控制。 

近場光學顯微術,探針加上光 

依 STM/AFM 控制針尖的技術基礎,外加光源於針尖上,即為近場光學顯微術(Scanning near-field optical microscopy, SNOM),依照光源形式的不同可區分為兩⼤類: 

1. 微孔式近場光學顯微術(aperture SNOM,簡稱 a-SNOM) 
2. 散射式近場光學顯微術(scattering SNOM,簡稱 s-SNOM)

a-SNOM 是利用透明的 AFM 針尖,先鍍上⼀層⾦屬薄膜,並打上⼩洞,讓光從⼤約 50-100nm 左右的⼩洞穿出,得到⼩於光學繞射極限的光訊號。s-SNOM 則是外加雷射光源聚焦於針尖上,並量測散射後的光訊號。其中,針尖增強拉曼散射光譜顯微鏡(Tip-enhanced Raman spectroscopy, TERS)是屬於 s-SNOM 的⼀種特殊近場光學模式,主要為量測拉曼散射光譜,即可識別分⼦鍵結的種類。由於拉曼訊號相對微弱,透過探針鍍上⾦屬薄膜,即可利⽤針尖端局域電場的放⼤效果,來增強待測物的拉曼訊號,並利用針尖的移動來得到奈米級空間解析度的拉曼成像。 

(左)a-SNOM 所使用的探針,針尖上有微孔。(中)a-SNOM 原理:綠色箭頭表示光從上方經微孔射入樣品,紅色箭頭表示偵測器接收光訊號。(右)s-SNOM 原理:綠色箭頭表示光聚焦於針尖,紅色箭頭表示偵測器接收光訊號。光源與偵測器的位置可互換。圖/陳祺提供

陳祺的研究歷程與觀點

在陳祺就讀博士期間,其研究領域主要為結合低溫超高真空 STM 的單分子光學量測,需要極度精進探針掃描顯微鏡的穩定與解析度。畢業之後將⽬標轉向室溫室壓下的探針掃描顯微術與光學的結合,用以量測更多種類和不導電樣品。

-----廣告,請繼續往下閱讀-----

陳祺在博⼠後期間的⼯作以 TERS 為主,曾發表解析度⾼達 2 奈米以下的成果,維基百科的 TERS 條⽬,也引⽤了陳祺當時發表在《Nature Communication》的論⽂。回國進入中研院之後,陳祺也開始 a-SNOM 的研究。

無論 TERS 或 a-SNOM,兩者的實驗設計都是建構在 AFM 上,因此陳祺會⾃⾏架設更精準的 AFM,以達成近場光學顯微術更佳的穩定性。 

近場光學實驗操作上的困難除了針尖的製作之外,穩定的 AFM 掃描其實也相當不容易,是維持針尖品質的關鍵。傳統上 a-SNOM 都是以接觸式(contact mode)的 AFM 方式掃描,以防止輕敲式(tapping mode)起伏會干擾光訊號,代價就是 AFM 的解析度極差。陳祺將⾃架的近場光學實驗放進⼿套箱裡,能讓針尖在輕敲式時維持極⼩的振幅(在⼀個奈米以下),可以大幅提高 AFM 的形貌解析度,也幾乎不損傷針尖。由於陳祺有非常豐富⾃架儀器的經驗,才能很⼤程度突破⼀般商⽤儀器的限制。 

不同的顯微影像比較。樣品為一種二維材料異質結構,左為結構示意圖,中為 AFM 影像,右為 a-SNOM 影像。AFM 能精確解析樣品的高低起伏,然而 a-SNOM 可解析樣品的光學特性。圖/陳祺提供

⼀般認為 TERS 有較佳的解析度,但由於 TERS 在散射訊號影像上有很大程度的不確定性,經常導致假訊號或假解析度的發生。近年來陳祺反⽽把研究的主軸轉向 a-SNOM,因為她更看重是否能由 AFM 得到的材料結構和高度,來解釋近場光學所量測的結果,以期研究材料背後的物理或化學現象。

-----廣告,請繼續往下閱讀-----

另外,陳祺近期最重要的突破是在⽔中完成 a-SNOM 的量測,將針尖與光學元件整合在自製的腔體(cage system)之中,得以在保持生物樣品的活性之下得到超高解析度的影像,這將是開啟利用近場光學研究⽣物課題的重要⾥程碑。

最後,⾝為擁有兩個孩⼦的女性研究員,「如何兼顧⼯作與家庭」或許是⼀般新聞媒體會問的問題。然⽽,陳祺分享⾃⼰的⼼得:「是不可能兼顧的啦!先集中精神做好⼀件事,等另⼀件要爆掉的時候再去救它。」可能坦承⾃⼰沒有辦法做好每件事, 反⽽讓陳祺在實驗上永遠能找到促使⾃⼰改進的動⼒。 

註解

註 1:量⼦穿隧電流:在量⼦世界中,物質同時具有波動和粒⼦的特性。因具有波動的性質, 當電⼦撞擊⼀層很薄的障礙物時,有不為零的機率穿過去,並產⽣穿隧電流(tunneling current )。穿隧電流與障礙物厚度成指數函數遞減,因此可藉由量測穿隧電流強度計算出待測物表⾯極微⼩的⾼低起伏。

科技大觀園_96
82 篇文章 ・ 1124 位粉絲
為妥善保存多年來此類科普活動產出的成果,並使一般大眾能透過網際網路分享科普資源,科技部於2007年完成「科技大觀園」科普網站的建置,並於2008年1月正式上線營運。 「科技大觀園」網站為一數位整合平台,累積了大量的科普影音、科技新知、科普文章、科普演講及各類科普活動訊息,期使科學能扎根於每個人的生活與文化中。